The Bright Side of Mathematics

The following pages cover the whole Manifolds course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: https://tbsom.de/support

Have fun learning mathematics!

Manifolds - Part 1

generalised surfaces?

\Longrightarrow (generalised) stokes's Theorem
$\begin{aligned} & \text { Metric space: } \\ & \text { set }(X, d) \\ & \hat{\jmath}, \text { distance function }\end{aligned}$

\leadsto define open sets $A \subseteq X$
Definition: Let X be a set, $P(X)$ be the power set, and $\tau \subseteq P(X)$ be a collection of subsets.

If \mathcal{T} satisfies:
(1) $\varnothing, X \in \tau$
(2) $A, B \in \tau \Rightarrow A \cap B \in \tau$
(3) $\left(A_{i}\right)_{i \in I}$ with $A_{i} \in \tau \Rightarrow \bigcup_{i \in I} A_{i} \in \mathcal{T}$
then τ is called a topology on X.
The elements of \mathcal{T} are called open sets.

Examples:
(a) $\tau=\{\varnothing, X\}$ is a topology on X (indiscrete topology)
(b) $\tau=P(X)$ is a topology on X (discrete topology)

Manifolds - Part 2
$\tau \subseteq P(X)$ topology on $X:$ (1) $\phi, X \in \tau$
(2) $A, B \in \tau \Rightarrow A \cap B \in \tau$
(3) $\left(A_{i}\right)_{i \in I}$ with $A_{i} \in \mathcal{T}$
(X, τ) is called a topological space.

$$
\Rightarrow \bigcup_{i \in I} A_{i} \in \mathcal{T}
$$

Important names: (X, τ) topological space, $S \subseteq X, p \in X$
(a) p interior point of $S: \Leftrightarrow$ There is an open set $U \in \mathcal{T}$: $p \in U$ and $U \subseteq S$

(b) p exterior point of $S: \Leftrightarrow$ There is an open set $U \in \mathcal{T}$: $p \in U$ and $U \subseteq X \backslash S$

(c) p boundary point of $S: \Longleftrightarrow$ for all open sets $U \in \mathcal{T}$ with $p \in U: U$

$$
U_{n} S \neq \phi \text { and } U_{n}(X \backslash S) \neq \phi
$$

(d) p accumulation point of $S: \Longleftrightarrow$ for all open sets $U \in \mathcal{T}$ with $p \in U$:

$$
U \backslash\{p\} \cap S \neq \phi
$$

More names: (a) $S^{0}:=\{p \in X \mid p$ interior point of $S\}$ interior of S
(b) Ext (S) $:=\{p \in X \mid p$ exterior point of $S\}$ exterior of S
(c) $\partial S:=\{p \in X \mid p$ boundary point of $S\}$ boundary of S
(d) $S^{\prime}:=\{p \in X \mid p$ accumulation point of $S\}$ derived set of S
(e) $\bar{S}:=$ SudS closure of S

Example: $\quad X=\mathbb{R}, \quad \tau=\{\phi, \mathbb{R}\} \cup\{(a, \infty) \mid a \in \mathbb{R}\}$
$S=(0,1) \longleftarrow$ not an open set:
no interior points: there is no $\phi \neq U \in \mathcal{T}$ with $U \subseteq S$

$$
\begin{aligned}
\Rightarrow & S^{0}=\varnothing \\
X \backslash S=(-\infty, 0] \cup[1, \infty) & \Rightarrow \operatorname{Ext}(S)=(1, \infty) \\
& \Rightarrow \partial S=(-\infty, 1] \Rightarrow \bar{S}=(-\infty, 1]
\end{aligned}
$$

Manifolds - Part 3

(X, τ) topological space

Convergence: $\quad\left(a_{n}\right)_{n \in \mathbb{N}}, a_{n} \in X$ converges to $a \in X$

In a metric space: \int The sequence members lie in each ε-ball around a, eventually.

For each ε-ball $B_{\varepsilon}(a)$, there is $N \in \mathbb{N}$ such that for all $n \geq N$:

$$
a_{n} \in B_{\varepsilon}(a)
$$

In a topological space:

Definition: (X, τ) topological space, $\left(a_{n}\right)_{n \in \mathbb{N}}$ sequence in X.
$a_{n} \xrightarrow{n \rightarrow \infty} a: \Longleftrightarrow$ For each $U \in \mathcal{T}$ with $a \in U$, there is $N \in \mathbb{N}$ such that for all $n \geq N$:

$$
a_{n} \in U
$$

Example: $\quad X=\mathbb{R}, \quad \tau=\{\phi, \mathbb{R}\} \cup\{(b, \infty) \mid b \in \mathbb{R}\}$

$$
\left(a_{n}\right)_{n \in \mathbb{N}}=\left(\frac{1}{n}\right)_{n \in \mathbb{N}}
$$

- converges to O : each open neighbourhood of O looks like

$$
(b, \infty) \text { for } b<0 \text {, so: } \frac{1}{n} \in(b, \infty)
$$

- converges to -1: each open neighbourhood of -1 looks like

$$
(b, \infty) \text { for } b<-1 \text {, so: } \frac{1}{n} \in(b, \infty)
$$

- converges to -2

Definition: A topological space (X, τ) is called a Hausdorff space if for all $x, y \in X$ with $x \neq y$ there is an open neighbourhood of $x: U_{x} \in \mathcal{T}$ and there is an open neighbourhood of $y: U_{y} \in \tau$
 with: $U_{x} \cap U_{y}=\varnothing$

Manifolds - Part 4
Projective space: $\quad P^{n}(\mathbb{R})=$ set of 1 -dimensional subspaces of \mathbb{R}^{n+1}

the directions define a set + topology?

Quotient topology: (X, τ) topological space, \sim equivalence relation on X
reflexive $x \sim x$
symmetric $x \sim y \Rightarrow y \sim x$ transitive $x \sim y \wedge y \sim z \Rightarrow x \sim z$
equivalence class of $x: \quad[x]_{\sim}:=\{y \in X \mid y \sim x\}$
$X / \sim:=\left\{[x]_{\sim} \mid x \in X\right\} \quad$ quotient set
$q: X \rightarrow X / \sim, \quad X \mapsto[x]_{\sim} \quad$ canonical projection

$$
\begin{aligned}
\bar{q}^{-1}[u] \subseteq X \text { open } & \Leftrightarrow: u \leq X / \sim \text { open } \\
\bar{q}^{-1}[u] \in \tau & \Leftrightarrow: u \in \hat{\tau}
\end{aligned}
$$

This defines a topology $\hat{\sim}$ on X / \sim, called the quotient topology.

Example:

$$
X=[0,1] \times(-1,1)
$$

Möbius strip

equivalence relation: $(0, s) \sim(1,-s)$

Manifolds - Part 5
(X, τ) topological space $\leadsto(X / \sim, \hat{\tau})$ quotient space
Projective space: $\quad P^{n}(\mathbb{R})=$ set of 1 -dimensional subspaces of \mathbb{R}^{n+1}

$$
S^{n} \subseteq \mathbb{R}^{n+1}
$$

$$
S^{n}:=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}
$$

- Euclidean norm
equivalence relation: $\quad X \sim-X$
Let's define: $\quad x \sim y: \Leftrightarrow(x=y$ or $x=-y)$

$P^{n}(\mathbb{R}):=S^{n} / \sim$ with quotient topology

Is $P^{n}(\mathbb{R})$ a Hausdorff space?

Take $[x]_{\sim},[y]_{\sim} \in P^{n}(\mathbb{R})$ with $[x]_{\sim} \neq[y]_{\sim} \Rightarrow x \neq y$ and $x \neq-y$

Take open neighbourhoods
$U, V \subseteq S^{n}$ of x and y, respectively,
with

$$
\begin{gathered}
U \cap V=\varnothing,-U \cap V=\varnothing \\
-U \cap-V=\varnothing, U \cap-V=\varnothing
\end{gathered}
$$

Look at: $\hat{U}:=q[u], \quad q: S^{n} \rightarrow S^{n} / \sim \quad$ canonical projection

$$
q^{-1}[\hat{u}]=U u(-U)_{\kappa_{\text {open }}}^{\epsilon \tau} \Rightarrow \underset{\kappa_{\text {open }}}{\hat{u}} \underset{\tau}{\hat{\tau}}
$$

(the same for $\hat{V}:=q[V]$)
We find: $q^{-1}[\hat{U}, \hat{V}]=q^{-1}[\hat{U}] \cap q^{-1}[\hat{V}]=(U \cup(-U)) \cap(V \cup-V)=\phi$ $\stackrel{9 \text { surjective }}{\Rightarrow} \hat{U} \cap \hat{V}=\phi$

Manifolds - Part 6
(X, τ) topological space: generate the topology τ

Definition: Let (X, τ) be a topological space. A collection of open subsets

for all $U \in \mathcal{T}$ there $s\left(A_{i}\right)_{\text {uT }}$ with $A_{i} \in \mathcal{B}$
$\operatorname{lich}^{A_{i} \in B}$ and $\quad \bigcup_{i \in I} A_{i}=U$

Examples: (a) $\mathcal{B}=\tau$ is always a basis.
(b) If τ is discrete topology on X, then $\mathcal{B}=\{\{x\} \mid x \in X\}$ is a basis of τ.
(c) Let (X, τ) be the topological space induced by a metric space (X, d)

$$
B=\left\{B_{\varepsilon}(x) \mid x \in X, \varepsilon>0\right\} \text { is a basis of } \tau
$$

(d) \mathbb{R}^{n} with standard topology (defined by Euclidean metric)

$$
\boldsymbol{\beta}=\left\{B_{\varepsilon}(x) \mid x \in \mathbb{Q}^{n}, \varepsilon \in \mathbb{Q}, \varepsilon>0\right\} \text { is a basis of } \tau
$$

only countably many elements
Definition: A topological space (X, τ) is called second-countable if there is a countable basis of τ.

Manifolds - Part 7

$\varepsilon-\delta$-definition

sequence definition

general definition

Definition: $\left(X, \mathcal{J}_{X}\right),\left(Y, \mathcal{T}_{Y}\right)$ topological spaces. $f: X \longrightarrow Y$ is called continuous if

$$
U \in \tau_{Y} \Rightarrow f^{-1}[u] \in \tau_{X}
$$

$\underline{\text { homeomorphism }}=f: X \longrightarrow Y$ bijective, continuous and $f^{-1}: Y \rightarrow X$ continuous

Examples: (a) $\left(Y, \tau_{Y}\right)=$ indiscrete topological space $\Rightarrow f: X \rightarrow Y$ continuous
(b) $\left(X, \tau_{X}\right)=$ discrete topological space $\Rightarrow f: X \rightarrow Y$ continuous
(c) $\left(X, \mathcal{J}_{X}\right)$ with equivalence relation $\sim,(X / \sim, \hat{\tau})$ quotient space
$q: X \rightarrow X / \sim, \quad X \mapsto[x]_{\sim} \quad$ canonical projection is continuous

Definition: $\left(X, \tau_{X}\right),\left(Y, \tau_{Y}\right)$ topological spaces.
$f: X \longrightarrow Y$ is called sequentially continuous if for all $x \in X$:

Fact:

$$
f: X \rightarrow Y \text { continuous } \underset{\sim}{\Longrightarrow} f: X \rightarrow Y \text { sequentially continuous }
$$

Manifolds - Part 8
$[a, b] \subseteq \mathbb{R}$ compact (Bolzano-Weierstrass and Heine-Borel)

$$
(x, \tau)
$$

cover with open sets

$$
\begin{aligned}
& \downarrow \\
& \text { ty many suffice? }
\end{aligned}
$$

Definition: Let (X, τ) be a topological space and $A \subseteq X$. A is called compact if
$\bigcup_{i \in I} U_{i} \supseteq A$ with $U_{i} \in \mathcal{T} \Rightarrow$ there is a finite $I_{0} \subseteq I$ with: $\bigcup_{i \in I_{0}} U_{i} \supseteq A$

We know: $A \subseteq \mathbb{R}_{\hat{j}}^{n}$ compact $\Leftrightarrow A$ closed and bounded $\left.\begin{array}{c}\text { Heine-Borel } \\ \text { theorem }\end{array}\right)$ with standard topology

Proposition: Let (X, τ) be a Hausdorff space. Then:

$$
A \subseteq X \text { comport } \Rightarrow A \text { dosed }
$$

Proof:

Assume A is compact.
Fix $b \in X \backslash A$.

For any $a \in A$, there are $U_{a}, V_{a} \in \mathcal{J}$ with $a \in U_{a}, b \in V_{a}$ and $U_{a} \cap V_{a}=\varnothing$

$$
A \subseteq \bigcup_{u A A} U_{a}
$$

(open cover)
A compact

(finite subcover)

with $A \cap V \subseteq \bigcup_{j=1}^{n} U_{a_{j}} \cap \bigcap_{j=1}^{n} V_{a_{j}}=\phi$
$\Rightarrow b$ is an interior point of $X \backslash A \Rightarrow A$ closed

Manifolds - Part 9

Definition: n-dimensional (topological) manifold:
topological space (X, τ) with: (1) Hausdorff space
(2) second-countable
(3) locally Euclidean of dimension n

Definition: (X, τ) is called locally Euclidean of dimension n if:
For all $x \in X$ there is an open neighbourhood $U \in \mathcal{T}$ and a homeomorphism $h: U \rightarrow U^{\prime}$ with $U^{\prime} \subseteq \mathbb{R}^{n}$ open. The map $h: U \rightarrow U^{\prime}$ is called a chart of (X, τ).

$$
\begin{aligned}
\omega: \Sigma & \longrightarrow D \\
& \text { differentiable? }
\end{aligned}
$$

Manifolds - Part 10

(1) Hausdorff space
(2) second-countable
(3) locally Euclidean of dimension n

chart (U, h)

Definition: A collection of charts $\left(U_{i}, h_{i}\right)_{i \in I}$ is called an atlas if: $\bigcup_{i \in I} U_{i}=M$
Example: (a) (M, τ) discrete topological space with countably many points

$\leadsto n$-dimensional manifold
(c) $S^{2} \subseteq \mathbb{R}^{3}, \quad S^{2}:=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\}$

2-dimensional manifold

$$
h_{3,-}:\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{x_{1}}{x_{2}}
$$

$$
h_{3,-}^{-1}:\binom{x_{1}^{\prime}}{x_{2}^{\prime}} \longmapsto\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
-\sqrt{1-\left\|x^{\prime}\right\|^{2}}
\end{array}\right)
$$

$\left(U_{i, \pm}, h_{i, \pm}\right)_{i \in\{1,2,\}\}}$ is an atlas.

Manifolds - Part 11

$$
S^{n}:=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}
$$

is an n-dimensional manifold with atlas $\left(\ddot{U}_{i, \pm}, h_{i, \pm}\right)_{i \in\{1, \ldots, n+1\}}$
Projective space: $P^{n}(\mathbb{R}):=S^{n} / \sim$ with quotient topology

for $n=1: \quad h_{1}: V_{1} \rightarrow V_{1}^{\prime} \subseteq \mathbb{R}^{1}, \quad h_{1}\left([x]_{\sim}\right)=\frac{x_{2}}{x_{1}} \quad$ slope
with inverse $h_{1}^{-1}\left(x_{1}^{\prime}\right)=\left[\binom{1}{x_{1}^{\prime}} \cdot \frac{1}{\sqrt{1^{2}+\left(x_{1}^{\prime}\right)^{2}}}\right] \underset{\sim}{\xrightarrow[1]{\sim}\}_{1}^{x} x_{1}^{\prime}}$
h_{2} works similarly $\Rightarrow 1$-dimensional manifold
for $n \in \mathbb{N}: \quad h_{i}: V_{i} \rightarrow V_{i}^{\prime} \subseteq \mathbb{R}^{n}$

$$
h_{i}\left([x]_{\sim}\right)=\left(\begin{array}{c}
\frac{x_{1}}{x_{i}} \\
\vdots \\
\vdots \\
\frac{x_{i-1}}{x_{i}} \\
\frac{x_{i+1}}{x_{i}} \\
\frac{x_{n+1}}{x_{i n}} \\
\frac{x_{i n}}{x_{i}}
\end{array}\right) \text { homeomorphism }
$$

$\Rightarrow h$-dimensional manifold

Manifolds - Part 12

$$
\begin{aligned}
& \text { Smooth structures }
\end{aligned}
$$

$$
\begin{aligned}
& C^{k} \text {-diffeomorphism } \\
& k \in\{0,1, \ldots\} \\
& \text { or } k=\infty \\
& \text { - } \left.\omega \text { is } k \text {-times continuously differentiable } \begin{array}{c}
\text { (partial derivatives up to the } k \text {-th order exist and are continuous) }
\end{array}\right\} \omega \in C^{k}(\cdot) \\
& \text { - } \omega \text { is bijective } \\
& \text { - } \omega^{-1} \in C^{k}(\cdots)
\end{aligned}
$$

Definition: - Two charts h, k are called C^{k}-smoothly compatible if the transition map is a C^{k}-diffeomorphism.

- An atlas $\left\{\left(U_{i}, h_{i}\right)_{i \in I}\right\}$ is called a C^{k}-atlas if any two charts are C^{k}-smoothly compatible.
- A maximal C^{k}-atlas \mathcal{A} is: (1) A is a C^{k}-atlas
(2) For any other C^{k}-atlas B, we have $B \nsupseteq A$.

Definition: n-dimensional C^{k}-smooth manifold:

- n-dimensional (topological) manifold
- maximal C^{k}-atlas $\left(C^{k}\right.$-smooth structure)

Manifolds - Part 13

Examples for smooth manifolds:
(a) $S^{n} \subseteq \mathbb{R}^{n+1}$ is a smooth manifold. We show that $\left(U_{i, \pm}, h_{i, \pm}\right)_{i \in\{1, \ldots, n+1\}}$ is C^{∞}-atlas:

For $n=2, i=3, j=1$

$$
x^{\prime}=\binom{x_{1}^{\prime}}{x_{2}^{\prime}} \stackrel{h_{i,+}^{-1}}{\longmapsto}\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\sqrt{1-\left\|x^{\prime}\right\|^{2}}
\end{array}\right) \stackrel{h_{j,+}}{\longmapsto}\binom{x_{2}^{\prime}}{\sqrt{1-\left\|x^{\prime}\right\|^{2}}} \quad C^{\infty} \text {-diffeomorphism }
$$

\leadsto extend to a maximal C^{∞}-atlas $\leadsto C^{\infty}$-smooth manifold
(b) \mathbb{R}^{n} is a smooth manifold
\rightarrow atlas given by one chart $\left(\mathbb{R}^{n}\right.$, id $) \rightarrow$ extend to a maximal C^{∞}-atlas (standard smooth structure for \mathbb{R}^{n})
(c) Consider $f \in C^{1}(\mathbb{R})$

G_{f} is a 1-dimensional manifold with one chart: $h: G_{f} \rightarrow \mathbb{R}$

$$
(x, f(x)) \mapsto x
$$

\leadsto extend to a smooth structure

Manifolds - Part 14

Definition: Let M be an n-dimensional (smooth) manifold. $M_{0} \subseteq M$ is called a k-dimensional submanifold of M if for all $p \in M_{0}$ there is a chart (U, h) of M with $h\left[M_{0} \cap U\right]=\left(\mathbb{R}^{k} \times \underset{\substack{n \\ n-k \text { zeros }}}{0}\right) \cap U^{\prime}$

(U, h) is called a submanifold chart for M_{0}.

Note: M_{0} is also a manifold:

$$
\begin{aligned}
(U, h) \text { submanifold chart } & \sim(\tilde{U}, \tilde{h}) \text { chart, } \tilde{U}:=U \cap M_{0} \\
& \tilde{h} \text { given by } p \mapsto h(p)=\left(\begin{array}{c}
\circledast \\
\vdots \\
\vdots \\
0 \\
0 \\
0
\end{array}\right) \longmapsto\left(\begin{array}{c}
* \\
\vdots \\
0
\end{array}\right) \in \mathbb{R}^{k}
\end{aligned}
$$

Manifolds - Part 15

Regular value theorem in $\mathbb{R}^{n}=$ preimage theorem $=$ submersion theorem $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ smooth

Definition: $f: U \rightarrow \mathbb{R}^{m}, U \subseteq \mathbb{R}^{n}$ open, C^{1}-function.
(1) $x \in U$ is called a critical point of f if $d f_{x}$ is not surjective (or $J_{f}(x)$ has rank less than m)
(2) $c \in f[U]$ is called a regular value of f if $\mathcal{f}^{-1}[\{c\}]$ does not contain any critical points.

Theorem:

$$
f: U \rightarrow \mathbb{R}^{m}, U \subseteq \mathbb{R}^{n} \text { open, } C^{\infty} \text { - function. }(n \geq m)
$$

If C is a regular value of f, then
$\mathcal{f}^{-1}[\{c\}]$ is an $(n-m)$-dimensional submanifold of \mathbb{R}^{n}.

Proof: Use implicite function theorem.

Example:

$$
\begin{aligned}
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad f\left(x_{1}, \ldots, x_{n}\right) & =x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \\
J_{f}\left(x_{1}, \ldots, x_{n}\right) & =\left(\begin{array}{llll}
2 x_{1} & 2 x_{2} & \cdots & 2 x_{n}
\end{array}\right) \\
& \Rightarrow x=0 \text { is the only critical point. }
\end{aligned}
$$

Hence: 1 is a regular value.

$$
\Rightarrow \quad \mathcal{F}^{-1}\left[\mathcal{C}^{\prime} \beta\right]=S^{n-1} \text { submanafold of } \mathbb{R}^{n} \text {. }
$$

Manifolds - Part 16

Smooth maps:

Use the smooth structures:

Definition: Let M and N be $C^{\infty}-$ smooth manifolds.
A map $f: M \longrightarrow N$ is called k-times differentiable at $p \in M$ if for charts $(U, h),(W, k)$ with $p \in U$ and $f(p) \in W$ the map $k \circ f \circ h^{-1} \quad k$-times differentiable at $h(p)$.

Moreover: $f: M \rightarrow N$ is called C^{∞}-smooth if f is k-times differentiable at $p \in M$ for every $p \in M$ and every $k \in \mathbb{N}$. We write: $f \in C^{\infty}(M, N)$.

Manifolds - Part 17

$f: M \rightarrow N$
$C^{\infty}-$ smooth

Examples of smooth maps:
(1) $S^{2} \longrightarrow \mathbb{R}^{3}$
inclusion map:

$$
\begin{aligned}
& h_{3,-}\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right)=\binom{x_{1}}{x_{2}} \\
& h_{3,-}^{-1}\left(\binom{x_{1}^{\prime}}{x_{2}^{\prime}}\right)=\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
-\sqrt{1-\left\|x^{\prime}\right\|^{2}}
\end{array}\right) \\
& i: x \longmapsto
\end{aligned}
$$

(2) $q: S^{2} \longrightarrow p^{2}(\mathbb{R})=S^{2} / \sim$

$$
(x \sim y \Leftrightarrow x=y \text { or } x=-y)
$$

$X \longmapsto[x]_{\sim}$ continuous map! smooth?

$$
k\left(\left[\left(\begin{array}{l}
x_{1} \\
x_{2}^{2} \\
x_{3}^{2}
\end{array}\right]_{\sim}\right)=\binom{\frac{x_{1}}{x_{3}}}{\frac{x_{2}}{x_{3}}}\right.
$$

Manifolds - Part 18

Regular Value Theorem:

Let M, N be smooth manifolds of dimension m and $n \quad(m \geq n)$, $f: M \rightarrow N$ be a smooth map, and $q \in N$ be a regular value of f.
$\longrightarrow \mathcal{F}^{-1}[\{q\}]$ does not contain critical points $\longrightarrow p \in M$ is called a critical point of f if

$$
\operatorname{rank} f_{p}:=\operatorname{rank}\left(J_{k \circ f \circ h^{-1}}(h(p))\right)
$$ is less than n (not maximal!).

Then: $f^{-1}[\{q\}]$ is a $(m-n)$-dim submanifold of M.

Example: (a) $G L(d, \mathbb{R}):=\left\{A \in \mathbb{R}^{d \times d} \mid \operatorname{det}(A) \neq 0\right\}$ is manifold of dimension d^{2}.
(b) $\operatorname{Sym}(d \times d, \mathbb{R}):=\left\{B \in \mathbb{R}^{d \times d} \mid B^{T}=B\right\}$ is manifold of dimension $\frac{d(d+1)}{2}$

$$
\frac{d^{2}-d}{2}-\left(\begin{array}{c}
\square 0 \\
\hdashline \\
\hdashline
\end{array}\right) \quad d^{2}-\frac{d^{2}-d^{\prime \prime}}{2}
$$

(c) $O(d, \mathbb{R}):=\left\{A \in G L(d, \mathbb{R}) \mid A^{\top} A=\mathbb{1}\right\}$ is a submanifold of $G L(d, \mathbb{R})$

Proof: $f: G L(d, \mathbb{R}) \longrightarrow \operatorname{sym}(d \times d, \mathbb{R}), f(A)=A^{\top} A$
Two things to show: (1) $f^{-1}[\{\mathbb{1}\}]=O(d, \mathbb{R})$
(2) $\mathbb{1}$ is a regular value of f

Case $d=2$:

$$
\begin{aligned}
\left(k \circ f \circ h^{-1}\right)\left(\begin{array}{l}
x_{1} \\
x_{2}^{2} \\
x_{4}^{3}
\end{array}\right) & =(k \circ f)\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)=k\left(\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)^{\top}\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)\right) \\
& =k\left(\left(\begin{array}{ll}
x_{1}^{2}+x_{3}^{2} & x_{1} x_{2}+x_{1} x_{4} \\
x_{1} x_{2}+x_{3} x_{4} & x_{2}^{2}+x_{4}^{2}
\end{array}\right)\right)=\left(\begin{array}{c}
x_{1}^{2}+x_{3}^{2} \\
x_{1} x_{2}+x_{3} x_{4} \\
x_{2}^{2}+x_{4}^{2}
\end{array}\right)
\end{aligned}
$$

Jacobian matrix: $\quad J_{\text {kofoh }}(x)=\left(\begin{array}{cccc}2 x_{1} & 0 & 2 x_{3} & 0 \\ x_{2} & x_{1} & x_{4} & x_{3} \\ 0 & 2 x_{2} & 0 & 2 x_{4}\end{array}\right)$
rank $=3$? Not for:

$$
\begin{aligned}
& x_{1}=x_{2}=0 \\
& x_{3}=x_{4}=0 \\
& x_{1}=x_{3}=0 \\
& x_{2}=x_{4}=0
\end{aligned}
$$

If $f(A)=\mathbb{1} \Rightarrow J_{\text {kofo } h^{-1}}(h(A))$ has rank $3 \Rightarrow \mathbb{1}$ regular value $\Rightarrow O(d, \mathbb{R})$ is a submanifold of dimension $d^{2}-\frac{d(d+1)}{2}=\frac{d(d-1)}{2}$

Manifolds - Part 19
submanifold: $\quad M \subseteq \mathbb{R}^{n} \quad k$-dimensional submanifold

local parametrisation
Example:

$$
\begin{aligned}
\varphi: \mathbb{R}_{\cap}^{1} U^{\prime} & \rightarrow M_{\cap} U \\
t & \mapsto\binom{\cos (t)}{\sin (t)}
\end{aligned}
$$

Tangent space:

Example:

surface given by a graph of a function:

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f \in C^{1}\left(\mathbb{R}^{2}\right)
$$

$$
M=G_{f}:=\left\{\left.\left(\begin{array}{c}
x \\
y \\
f(x, y)
\end{array}\right) \right\rvert\,(x, y) \in \mathbb{R}^{2}\right\}
$$

parameterisation: $\quad \varphi: \mathbb{R}^{2} \rightarrow M,\binom{x}{y} \mapsto\left(\begin{array}{c}x \\ y \\ f(x, y)\end{array}\right)$

$$
\begin{aligned}
& J_{\varphi}(x, y)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{\partial f}{\partial x}(x, y) & \frac{\partial f}{\partial y}(x, y)
\end{array}\right) \\
&\left.\Rightarrow \prod_{\substack{p \\
G_{\begin{subarray}{c}{x \\
y \\
f(x, y)} }}^{\text {sub }} M}\end{subarray}}^{\Rightarrow}=\operatorname{span}\left(\begin{array}{c}
1 \\
0 \\
\frac{\partial f}{\partial x}(x, y)
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
\frac{\partial f}{\partial y}(x, y)
\end{array}\right)\right)
\end{aligned}
$$

Manifolds - Part 20
$T_{p}^{\text {sub }} M \quad$ tangent space for submanifold $M \subseteq \mathbb{R}^{n}, p \in M$

$$
T_{p}^{\text {sub }} M:=\left\{J_{\varphi}\left(\bar{q}^{-}(p)\right) x \mid x \in \mathbb{R}^{k}\right\} \subseteq \mathbb{R}^{n}
$$

Idea:

Proposition: $T_{p}^{\text {sub }} M=\left\{\gamma^{\prime}(0) \mid \gamma:(-\varepsilon, \varepsilon) \rightarrow M\right.$ differentiable with $\left.\gamma(0)=p\right\}$

Proof: $(\subseteq) \quad V \in T_{p}^{\text {sub }} M \Rightarrow V=J_{\varphi}(\underbrace{\varphi^{-1}(p)}_{\tilde{p}}) x \quad$ for $x \in \mathbb{R}^{k}, \varphi$ local parametrisation

$$
\begin{aligned}
\Rightarrow V & =J_{\varphi}(\tilde{\gamma}(0)) \tilde{\gamma}^{\prime}(0) \quad \text { with } \tilde{\gamma}(t)=\widetilde{p}+t x, \tilde{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{k} \\
& =\left.\frac{d}{d t}(\underbrace{\varphi \circ \tilde{\gamma}}_{\gamma})\right|_{t=0}=\gamma^{\prime}(0)
\end{aligned}
$$

(\supseteq) Take: $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ differentiable with $\gamma(0)=p$

$$
\gamma^{\prime}(0)=\left.\frac{d}{d t}(\varphi \circ \tilde{\gamma})\right|_{t=0}=J_{\varphi}(\tilde{\gamma}(0)) \tilde{\gamma}^{\prime}(0)=j_{\varphi}\left(\varphi^{-1}(p)\right) x \in T_{p}^{\text {sub }} M
$$

Manifolds - Part 21

$$
T_{p}^{s u b} M \leadsto T_{p} M
$$

for $M \subseteq \mathbb{R}^{n}$ smooth submanifold

for M
smooth manifold

Definition: $C_{p}(M):=\{\gamma:(-\varepsilon, \varepsilon) \rightarrow M \mid \gamma$ differentiable with $\gamma(0)=p\}$

$$
\begin{aligned}
\gamma \sim \alpha: \Leftrightarrow & (h \circ \gamma)^{\prime}(0)=(h \circ \alpha)^{\prime}(0) \\
& \text { for a chart }(u, h) .
\end{aligned}
$$

equivalent class: $[\gamma]_{\sim}:=\{\alpha \mid \gamma \sim \alpha\}$ represents tangent vector

$$
T_{p} M:=C_{p}(M) / \sim \quad \text { (set of all equivalence classes) }
$$

tangent space of the manifold M

Result: . For a submanifold

- $T_{p} M$ is a vector space with the operations:

$$
\begin{aligned}
v+w & :=h_{*}^{-1}\left(h_{*}(v)+h_{*}(w)\right) \quad \text { with } h_{*}:[\gamma]_{\sim} \mapsto(h \circ \gamma)^{\prime}(0) \\
\lambda \cdot v & :=h_{*}^{-1}\left(\lambda \cdot h_{*}(v)\right)
\end{aligned}
$$

Manifolds - Part 22
smooth manifold M of dimension $n, p \in M$.

chart (U, h) :

\mathbb{R}^{n}

defined by:

$$
\begin{aligned}
& h_{*}: T_{p} M \rightarrow \mathbb{R}^{n} \\
& \int_{1}[\gamma] \mapsto(h \circ \gamma)^{\prime}(0) \\
& \text { linear }+ \text { bijective } \\
& \sum_{*}:=h_{*}^{-1}
\end{aligned}
$$

Definition: coordinate basis (standard basis with respect to (U, h)):
For (U, h) and $p \in U$, we define: $\partial_{j}:=\varphi_{*}\left(e_{j}\right)$
where $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}
Remember: For submanifolds:

$$
\left(\partial_{1}, \partial_{2}, \ldots, \partial_{n}\right) \text { is essentially } \quad\left(\frac{\partial \varphi}{\partial x_{1}}(\tilde{p}), \frac{\partial \varphi}{\partial x_{2}}(\tilde{p}), \ldots, \frac{\partial \varphi}{\partial x_{n}}(\tilde{p})\right)
$$

Soon: $f: M \longrightarrow N$ smooth $\sim d f_{p}: T_{p} M \longrightarrow T_{p} N$ differential

Manifolds - Part 23

Definition: $\frac{\text { tangent bundle }}{} T M:=\bigsqcup_{p \in M}^{\text {disjoint }} T_{p} M:=\bigcup_{p \in M}\{p\} \times T_{p} M$
\rightarrow smooth manifold of dimension $2 \cdot \operatorname{dim}(M)$

Definition: differential of f at point p

$$
\begin{aligned}
d f_{p}: & T_{p} M \longrightarrow \\
& {[\gamma] \longmapsto\left[T_{f(p)} N\right.} \\
& {\left[f_{0 \gamma}\right] }
\end{aligned}
$$

differential: $d f: p \mapsto d f_{p}$

Example for submanifolds $M, N \subseteq \mathbb{R}^{n}$ smooth submanifolds

Example: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (smooth map)

$$
\begin{aligned}
d f_{p}([\gamma])^{\text {bijection }} & =(f \circ \gamma)^{\prime}(0)=J_{f}(\underbrace{\gamma(0)}_{p}) \underbrace{\gamma^{\prime}(0)}_{\text {tangent vector }} \\
& =\text { directional derivative of } f \text { along }[\gamma] \text { at } p
\end{aligned}
$$

Manifolds - Part 24

Differential in local charts?

Choose: $[\gamma] \in T_{p} M$:

$$
\begin{aligned}
d k_{f(p)}\left(d f_{p}([\gamma])\right) & =d k_{f(p)}([f \circ \gamma]) \\
& =[k \circ f \circ \gamma] \stackrel{\text { bijection }}{=}(k \circ f \circ \gamma)^{\prime}(0)
\end{aligned}
$$

$$
=(\tilde{f} \circ h \circ \gamma)^{\prime}(0)
$$

$$
=J_{\tilde{f}}(h(\rho))(h \circ \gamma)^{\prime}(0)
$$

bijection

$$
\begin{aligned}
& =J_{\tilde{f}}(h(p))[h \circ \gamma] \\
& =J_{\tilde{f}}(h(p)) d h_{p}([\gamma])
\end{aligned}
$$

Remember:

$$
\begin{aligned}
f & =k^{-1} \circ \tilde{f} \circ h \\
d f & =d k^{-1} J \tilde{f} d h
\end{aligned}
$$

Manifolds - Part 25
Recall: $p \in M,(U, h):$ coordinate basis $\left(\partial_{1}, \ldots, \partial_{n}\right)$ of $T_{p} M$

$$
\varphi_{\varphi}^{\{ }=h^{-1}, \quad \partial_{j}:=\varphi_{*}\left(e_{j}\right)=d \varphi_{h(p)}\left(e_{j}\right)
$$

Directional derivative: $f: M \rightarrow \mathbb{R}$ smooth
defined by:
$h_{*}: T_{p} M \rightarrow \mathbb{R}^{n}$
$V_{1}[\gamma] \mapsto(h \circ \gamma)^{\prime}(0)$
linear + bijective
$\varphi_{x}=h_{t}^{-1}$

Example:

$$
\begin{aligned}
\partial_{1} & =d \varphi_{h(t)}\left(e_{1}\right)=\left[\varphi_{0} \tilde{\gamma}\right], \tilde{\gamma}(t)=\underset{s}{h(z)}+t \\
& =\left(\varphi_{0} \tilde{\gamma}\right)^{\prime}(0)=\left.\frac{d}{d t}\right|_{t=0} e^{i(s+t)}=i \cdot e^{i s}
\end{aligned}
$$

$$
\tilde{\partial}_{1}=d \psi_{k(f(s))}\left(e_{1}\right)
$$

map FI: $\quad s \stackrel{\varphi}{\mapsto} e^{i s} \stackrel{f}{\mapsto}\left(e^{i s}\right)^{2} \stackrel{k}{\mapsto} 2 s$

$$
J_{\tilde{f}}(s)=2
$$

$$
\begin{aligned}
& \left(\partial_{j} f\right)(p):=d f_{p}\left(\partial_{j}\right) \\
& =d f_{p}\left(d \varphi_{h \rho}\left(e_{j}\right)\right) \\
& =[f \circ \varphi \circ \tilde{\gamma}] \\
& \stackrel{\text { action }}{=}(f \circ \varphi \circ \tilde{\gamma})^{\prime}(0) \\
& \stackrel{\text { rule }}{=} J_{f_{0 \varphi}(h(\rho))}^{\underbrace{}_{e_{j}}} \tilde{\gamma}^{\prime}(0), \frac{\partial\left(f_{\circ} \varphi\right)}{\partial x_{j}}(h(\rho))
\end{aligned}
$$

Manifolds - Part 26

Introduction to Ricci calculus / tensor calculus
 C calculating in coordinates
 C positions of indices matter (superscripts, subscripts)

our language	Ricci calculus
components of a given chart	$h^{j}: U \rightarrow \mathbb{R}$ coordinates
$(U, h), h: U \rightarrow \mathbb{R}^{n}$	or simply: $x^{1}, x^{2}, \ldots, x^{n}$

coordinate basis of $T_{p} M$:

$$
\partial_{j}:=\varphi_{*}\left(e_{j}\right)
$$

tangent vector $[\gamma] \in T_{p} M$:

$$
v_{1} \partial_{1}+v_{2} \partial_{2}+\cdots+v_{n} \partial_{n}
$$

inner product on $T_{p} M$:

$$
\langle v, w\rangle \in \mathbb{R}
$$

$\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \cdots, \frac{\partial}{\partial x^{n}}$

$V^{j} \underbrace{g_{j k}}_{j k} \underbrace{k}$ tensor
dual to a contravariant vector: $V_{j} \underbrace{d x^{j}}$

$$
\begin{aligned}
d x_{j}\left(\partial_{k}\right) & = \begin{cases}1, & j=k \\
0, & j \neq k\end{cases} \\
& =\delta_{j k}
\end{aligned}
$$

$$
d x^{j}\left(\frac{\partial}{\partial x^{k}}\right)=\delta_{k}^{j}
$$

$$
\text { Manifolds - Part } 27
$$

Recall:

$$
\begin{aligned}
\text { Define: } T_{p}^{*} M & :=\left(T_{p} M\right)^{*} \\
& =\left\{\alpha: T_{p} M \rightarrow \mathbb{R} \text { linear }\right\} \\
\rightarrow d x_{j, p}: T_{p} M & \rightarrow \mathbb{R} \\
d x_{j, p}\left(\partial_{k}\right) & =\delta_{j k} \quad \text { linear map: }
\end{aligned}
$$

differential form: map ω defined on M such that $\omega(p) \in T_{p}^{*} M$
(one-form)

$$
d x_{j}: p \mapsto d x_{j, p} \in T_{p}^{*} M
$$

Some multilinear algebra: $A l t^{k}(V):=\{\alpha: \underbrace{V x \cdots x V}_{k \text {-times }} \longrightarrow \mathbb{R} \begin{array}{l}\text { multilinear (} k \text {-linear) } \\ + \text { alternating }\end{array}\}$

$$
\begin{array}{r}
\uparrow_{\alpha}\left(v_{1}, \ldots, v_{k}\right)=0 \\
\text { if }\left(v_{1}, \ldots, v_{k}\right)
\end{array}
$$

Example: $\quad \alpha \in$ Alt $^{2}(V), \alpha\left(v_{1}, v_{2}\right)=-\alpha\left(v_{2}, v_{1}\right)$

$$
\operatorname{det} \in A l t^{2}\left(\mathbb{R}^{2}\right)
$$

$\alpha \in \mathrm{Alt}^{k}(V)$ is called an alternating k-form on V
Remember: $\quad A l t^{1}(V)=V^{*}$ (dual space of V)

$$
\mathrm{Alt}^{0}(\mathrm{~V})=\mathbb{R}
$$

Manifolds - Part 28

Wedge product: \wedge multiplication defined for $\alpha \in A l t^{k}(V), \beta \in A l t^{s}(V)$

$$
\begin{aligned}
& \Lambda: A l t^{k}(V) \times A l t^{s}(V) \longrightarrow A l t^{k+s}(V) \\
& (\alpha, \beta) \longmapsto \alpha \wedge \beta \\
& \xrightarrow{(k+s) \text {-linear }}(\alpha \wedge \beta)\left(v_{1}, \ldots, v_{k+s}\right): \neq \alpha\left(v_{1}, \ldots, v_{k}\right) \cdot \beta\left(v_{k+1}, \ldots, v_{k+s}\right) \\
& \text { not a possible definition: } \\
& \text { (not alternating) }
\end{aligned}
$$

Definition: For $\alpha \in A l t^{k}(V), \quad \beta \in A l t^{s}(V)$, we define $\alpha \wedge \beta \in A l t^{k+s}(V)$ by:

$$
(\alpha \wedge \beta)\left(v_{1}, \ldots, v_{k+s}\right):=\frac{1}{k!\cdot s!} \sum_{\sigma \in S_{k+\delta}} \operatorname{sgn}(\sigma) \alpha\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \beta\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+s)}\right)
$$

Examples: (a) $\alpha, \beta \in A l t^{1}(V)=V^{*}$:

$$
(\alpha \wedge \beta)(u, v)=\alpha(u) \beta(v)-\alpha(v) \beta(u)
$$

(b)

$$
\begin{aligned}
& \alpha, \beta \in A l t^{1}\left(\mathbb{R}^{3}\right), \quad \alpha\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right)=x_{1}, \beta\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right)=x_{2}=\underbrace{(0,1,0)}_{\text {identified with } \beta}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& (\alpha \wedge \beta)\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\right)=x_{1} y_{2}-y_{1} x_{2}=\langle\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \underbrace{\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)}\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\rangle
\end{aligned}
$$

Properties: (a) $\alpha \wedge \beta=(-1)^{\mathrm{k} \cdot \mathrm{s}} \beta \wedge \alpha \quad$ (anticommutative)
(b) $\left(\alpha+\alpha^{\prime}\right) \wedge \beta=\alpha \wedge \beta+\alpha^{\prime} \wedge \beta$

$$
(\lambda \alpha) \wedge \beta=\lambda(\alpha \wedge \beta)
$$

(bilinear)
(c)

$$
\alpha \wedge(\beta \wedge \gamma)=(\alpha \wedge \beta) \wedge \gamma \quad \text { (associative) }
$$

(d) For a linear map $f: W \rightarrow V$ and $\alpha \in A l t^{k}(V)$ define:

$$
\text { pullback }\left(f^{*} \alpha\right)\left(w_{1}, \ldots, w_{k}\right):=\alpha\left(f\left(w_{1}\right), \ldots, f\left(w_{k}\right)\right)
$$

$$
f^{*}(\alpha \wedge \beta)=f^{*} \alpha \wedge f^{*} \beta
$$

("natural")

Manifolds - Part 29

M smooth manifold of dimension $n \Rightarrow T_{p} M \begin{aligned} & n \text {-dimensional } \\ & \text { vector space }\end{aligned}$

Definition:

$$
\begin{aligned}
\omega: M & \longmapsto \bigcup_{p \in M} A l t^{k}\left(T_{p} M\right) \\
p & \longmapsto \omega_{p}=\omega(p) \in A l t^{k}\left(T_{p} M\right)
\end{aligned}
$$

is called a k-form on M.

We also define:

$$
\begin{aligned}
& \omega \wedge \eta \text { as }(\omega \wedge \eta)(p):=\omega(p) \wedge \eta(p) \\
& f^{*} \omega \text { as }\left(f^{*} \omega\right)(p):=\left(d f_{p}\right)^{*} \omega(p) \\
& f: \wedge \rightarrow M \text { smooth }
\end{aligned}
$$

Basis elements:

basis of $T_{p} M:\left(\partial_{1}, \partial_{2}, \ldots, \partial_{h}\right)$ with $\partial_{j}:=\varphi_{*}\left(e_{j}\right)=d \varphi_{h(p)}\left(e_{j}\right)$

$$
\text { basis of }\left(T_{p} M\right)^{*}=A l t^{1}\left(T_{p} M\right):\left(d x_{p}^{1}, d x_{p}^{2}, \ldots, d x_{p}^{n}\right)
$$

defined by: $d x_{p}^{j}\left(\partial_{k}\right)=\delta_{k}^{j}= \begin{cases}1, & j=k \\ 0, & j \neq k\end{cases}$
Proposition: A basis of $A l t^{k}\left(T_{p} M\right)$ is given by:

$$
\left(d x_{p}^{\mu_{1}} \wedge d x_{p}^{\mu_{2}} \wedge \cdots \wedge d x_{p}^{\mu_{k}}\right)_{\mu_{1}<\mu_{2}<\cdots<\mu_{k}}
$$

Example: $\operatorname{dim}(M)=3, \operatorname{Alt}^{2}\left(T_{p} M\right)$:

$$
\left(d x_{p}^{1} \wedge d x_{p}^{2}, d x_{p}^{1} \wedge d x_{p}^{3}, d x_{p}^{2} \wedge d x_{p}^{3}\right)
$$

Conclusion: Each k-form on M can locally be written as:

$$
\begin{aligned}
& \omega(p)=\sum_{\mu_{1}<\cdots<\mu_{k}} \omega_{\mu_{1}, \mu_{2}, \ldots, \mu_{k}}(p) \cdot d x_{p}^{\mu_{1}} \wedge d x_{p}^{\mu_{2}} \wedge \cdots \wedge d x_{p}^{\mu_{k}} \\
& \omega_{\mu_{1}, \mu_{2}, \ldots, \mu_{k}}: U \longrightarrow \mathbb{R} \quad \text { component functions }
\end{aligned}
$$

Definition: - If all component functions are differentiable at p, then ω is differentiable at p.

- If ω is differentiable at all $p \in M, \quad \longrightarrow \omega \in \Omega^{k}(M)$ then ω is called a differential form on M.

$$
\Omega^{0}(M):=C^{\infty}(M)
$$

Manifolds - Part 30
differential form on a manifold: $\omega \in \Omega^{k}(M) \longleftarrow k$-form on M differentiable

$$
\omega(p)=\sum_{\mu_{1}<\cdots<\mu_{k}} \omega_{\mu_{1}, \mu_{2}, \ldots, \mu_{k}}(p) \cdot d x_{p}^{\mu_{1}} \wedge d x_{p}^{\mu_{2}} \wedge \cdots \wedge d x_{p}^{\mu_{k}}
$$

Examples: (a)

$$
d x_{p}^{j}\left(\partial_{k}\right)=\delta_{k}^{j}
$$

identify: $\quad \partial_{1}=\binom{1}{0}, \quad d x_{p}^{1}=(1,0)$

$$
\begin{aligned}
\partial_{2}=\binom{0}{1}, d x_{p}^{2} & =(0,1) \\
\left(d x_{p}^{1} \wedge d x_{p}^{2}\right)\left(\begin{array}{ll}
a_{1}, & a_{2} \\
\| & \|
\end{array}\right) & =\sum_{\sigma \in S_{2}} \operatorname{sgn}(\sigma) d x_{p}^{1}\left(a_{\sigma(1)}\right) d x_{p}^{2}\left(a_{\sigma(2)}\right) \\
\binom{a_{1,1}}{a_{2,1}}\binom{a_{1,2}}{a_{2,2}} & =\sum_{\sigma \in S_{2}} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)}=\operatorname{det}\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)
\end{aligned}
$$

(b) Each $w \in \Omega^{n}\left(\mathbb{R}^{n}\right)$ can be written as:

$$
\begin{aligned}
\omega(p) & =\omega_{1,2, \ldots, n}(p) d x_{p}^{1} \wedge d x_{p}^{2} \wedge \cdots \wedge d x_{p}^{n} \\
& =\omega_{1,2, \ldots, n}(p) \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & 1 \\
i & i & i
\end{array}\right)
\end{aligned}
$$

(c)

$$
M=\mathbb{R}^{2}
$$

$\left(\int \varphi\right.$ given by polar coordinates $\varphi(r, \theta)=\binom{r \cdot \cos (\theta)}{r \cdot \sin (\theta)}$

$$
\begin{aligned}
& \partial_{j}:=\varphi_{*}\left(e_{j}\right)=J_{\varphi}(\tilde{p})\left(e_{j}\right) \\
& \partial_{1}(r, \theta)=\frac{\partial \varphi}{\partial r}(r, \theta)=\binom{\cos (\theta)}{\sin (\theta)} \\
& \partial_{2}(r, \theta)=\frac{\partial \varphi}{\partial \theta}(r, \theta)=\binom{-r \cdot \sin (\theta)}{r \cdot \cos (\theta)}
\end{aligned}
$$

corresponding 1-forms: $\quad d r_{p}=(\cos (\theta), \sin (\theta))=\frac{1}{\sqrt{x^{2}+y^{2}}}(x, y)$
for $p=(x, y) \quad d \theta_{p}=\frac{1}{r}(-\sin (\theta), \cos (\theta))=\frac{1}{x^{2}+y^{2}}(-y, x)$

2-form: $\quad\left(d r_{p} \wedge d \theta_{p}\right)\left(e_{1}, e_{2}\right)=d r_{p}\left(e_{1}\right) d \theta_{p}\left(e_{2}\right)-d r_{p}\left(e_{2}\right) d \theta_{p}\left(e_{1}\right)$ $=\frac{1}{r}(\cos (\theta))^{2}-\frac{1}{r} \cdot(-1)(\sin (\theta))^{2}$ $=\frac{1}{r}$

$$
\Rightarrow r d r_{p} \wedge d \theta_{p}=\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
i & 1
\end{array}\right)=d x_{p} \wedge d y_{p}
$$

Manifolds - Part 31

vector space $\longleftarrow \sim$ orientation
for example: \mathbb{R}^{n} with basis: $B=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ change-of-basis matrix $T_{c \in B} \underbrace{\longrightarrow}_{e=\left(C_{1}, C_{2}, \ldots, C_{n}\right)} e_{1}$

$$
\begin{aligned}
& \operatorname{det}\left(T_{C \leftarrow B}\right)>0:\{\text { positively orientated } \\
& \operatorname{det}\left(T_{C \leftarrow B}\right)<0: \text { negatively orientated }
\end{aligned}
$$

\Longrightarrow two equivalence classes for bases

$\operatorname{det}\left(T_{e \in B}\right)>0$

$$
\begin{gathered}
{[\{\text { basis }\}]} \\
\operatorname{det}\left(T_{e \leftarrow B}\right)>0
\end{gathered}
$$

Remember: V finite-dimensional vector space + one chosen equivalence class

$$
\leadsto \underline{\text { orientation }}(V, \text { or })
$$

Orientations for manifolds:

Definition: A smooth manifold M is called orientable if there is a family of orientations for the tangent spaces $\left\{\left(T_{p} M\right.\right.$, or $\left.\left.{ }_{p}\right)\right\}$ such that

$$
\forall p \in M \quad \exists(U, h) \quad \forall x \in U: \quad\left(\partial_{1}^{(h)}(x), \partial_{2}^{(h)}(x), \ldots, \partial_{n}^{(h)}(x)\right) \in \text { or } r_{x}
$$

Example: (a) If M has an atlas with one chart (M, h), then M is orientable.
(b) Möbius strip:

around the strip:

Manifolds - Part 32

orientable manifold M

Fact: Let M be an n-dim smooth manifold. Then the following claims are equivalent:
(a) M is orientable: We have $\left\{\left(T_{p} M\right.\right.$, or $\left.\left.p\right)\right\}$ such that

$$
\forall p \in M \quad \exists(U, h) \quad \forall x \in U: \quad\left(\partial_{1}^{(h)}(x), \partial_{2}^{(h)}(x), \ldots, \partial_{n}^{(h)}(x)\right) \in o r_{x}
$$

(b) There is an atlas for M collection of charts that cover the manifold such that all transition maps

$$
\begin{array}{r}
w: \Sigma \rightarrow D \text { satisfy: } \\
\operatorname{det}\left(J_{\omega}(x)\right)>0
\end{array}
$$

(c) There is a differential form (volume form)

$$
\omega \in \Omega^{n}(M) \quad \text { with } \quad \omega(p) \neq 0 \quad \text { for all } p \in M .
$$

Proof: $\quad(a) \Leftrightarrow(b)$

We have: $\quad \psi_{*}(\underbrace{d_{\omega}(\tilde{p}) e_{1}})=\varphi_{*}\left(e_{1}\right)$
first column of Jacobian

$$
=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right)=\sum_{j} \lambda_{j} e_{j}
$$

$$
\Rightarrow \sum_{j=1}^{n} \lambda_{j} \underbrace{\psi_{*}\left(e_{j}\right)}_{\partial_{j}^{(k)}(p)}=\underbrace{\varphi_{*}\left(e_{1}\right)}_{\partial_{1}^{(h)}(p)}(*)
$$

Change-of-basis matrix: $B=\left(\partial_{1}^{(h)}(p), \ldots, \partial_{n}^{(h)}(p)\right) \underset{T_{c \in B}}{\sim} e=\left(\partial_{1}^{(k)}(p), \ldots, \partial_{n}^{(k)}(p)\right)$

$$
\stackrel{(*)}{\Rightarrow} T_{c \leftarrow B}=\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\vdots \\
\lambda_{n}
\end{array}\right)=J_{\omega}(\hat{p})
$$

Hence:

$$
\operatorname{det}\left(T_{c \leftarrow B}\right)>0 \Leftrightarrow \operatorname{det}\left(J_{\omega}(x)\right)>0
$$

(a) \Leftrightarrow (b)

Manifolds - Part 33

In \mathbb{R}^{n} : inner product $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$
write: $\quad g(x, y)=\langle x, y\rangle$

Definition: M smooth manifold. If we have an inner product g_{p} on $T_{p} M$ for all $p \in M$ and $p \mapsto g_{p}$ smooth, then:
$g: p \mapsto g_{p}$ is called a Riemannian metric and
(M, g) is called a Riemannian manifold.

What does smooth mean?

$$
g_{x}\left(\partial_{i}^{(h)}(x), \partial_{j}^{(h)}(x)\right)=: g_{i j}^{(h)}(x)
$$

$$
\left(\partial_{1}^{(h)}(x), \partial_{2}^{(h)}(x), \ldots, \partial_{n}^{(h)}(x)\right)
$$

maps: $U \longrightarrow \mathbb{R}$ smooth!

$$
x \longmapsto g_{i j}^{(h)}(x)
$$

(Einstein summation convention)
In local coordinates:

$$
g_{x}(\cdot, 0) \stackrel{\downarrow}{=} g_{i, j}^{(h)}(x) d x_{x}^{i}(\cdot) d x_{x}^{j}(\odot)
$$

Hence: g_{x} can be seen as a symmetric matrix: $G=\left(g_{i j}^{(h)}(x)\right)_{i j}$

Manifolds - Part 34

Riemannian metric: $\quad g: p \stackrel{g_{p}}{\mapsto}$ inner product on $T_{p} M$

Submanifolds in \mathbb{R}^{N} :
n-dimensional submanifold

standard Riemannian metric
Note: $T_{p} M \cong T_{p}^{\text {sub }} M=\operatorname{span}\left(\frac{\partial \varphi}{\partial x_{1}}, \ldots, \frac{\partial \varphi}{\partial x_{n}}\right)$

$$
g_{i, j}^{(h)}(\rho)=\left\langle\frac{\partial \varphi}{\partial x_{i}}(\tilde{p}), \frac{\partial \varphi}{\partial x_{j}}(\tilde{p})\right\rangle_{\text {standard }}
$$

Examples: (a) 1-dimensional submanifold in \mathbb{R}^{N}

$$
\begin{array}{ll}
g_{11}^{(h)}(p)= & \left\langle\varphi^{\prime}(t), \varphi^{\prime}(t)\right\rangle_{\text {standard }}=\left\|\varphi^{\prime}(t)\right\|_{\text {standard }}^{2} \\
\text { length: } & \int_{a}^{b}\left\|\varphi^{\prime}(t)\right\|_{\text {standard }} d t=\int_{a}^{b} \sqrt{\operatorname{det}(G)} d t
\end{array}
$$

(b) $\quad S^{2} \subseteq \mathbb{R}^{3}$ has parametrization given by spherical coordinates:

$$
\Phi(\theta, \varphi)=\left(\begin{array}{c}
\sin (\theta) \cos (\varphi) \\
\sin (\theta) \sin (\varphi) \\
\cos (\theta)
\end{array}\right)
$$

$$
\Rightarrow \text { two tangent vectors: } \frac{\partial \Phi}{\partial \theta}=\left(\begin{array}{c}
\cos (\theta) \cos (\varphi) \\
\cos (\theta) \sin (\varphi) \\
-\sin (\theta)
\end{array}\right)
$$

$$
\frac{\partial \Phi}{\partial \varphi}=\left(\begin{array}{c}
-\sin (\theta) \sin (\varphi) \\
\sin (\theta) \cos (\varphi) \\
0
\end{array}\right)
$$

$$
\Rightarrow G=\left(\begin{array}{cc}
1 & 0 \\
0 & \sin ^{2}(\theta)
\end{array}\right) \rightarrow \sqrt{\operatorname{det}(G)}=|\sin (\theta)|
$$

volume form: $\sqrt{\operatorname{det}(G)} d \theta \wedge d \varphi$

Manifolds - Part 35

We already know: An orientable n-dimensional manifold M has a non-trivial volume form $\omega \in \Omega^{n}(M)$.

Definition: M orientable Riemannian manifold of dimension n. Then the canonical volume form $\omega_{M} \in \Omega^{n}(M)$ is defined by: If $\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ is a positively orientated basis of $T_{p} M$ and an orthonormal basis of $T_{p} M(O N B), \quad g_{p}\left(v_{i}, v_{j}\right)=\delta_{i j}$

$$
\text { then: } \quad \omega_{M}(p)\left(v_{1}, v_{2}, \ldots, v_{n}\right)=1
$$

Proposition: (M, g) orientable Riemannian manifold of dimension n.

苗解
$\stackrel{n}{n})_{\varphi}=\mathbb{R}^{n}$

$$
\left(\partial_{1}^{(h)}(x), \partial_{2}^{(h)}(x), \ldots, \partial_{n}^{(h)}(x)\right)
$$

is positively orientated for all $x \in U$.

$$
\omega_{M}(x)=\sqrt{\operatorname{det}(G)} d x_{x}^{1} \wedge d x_{x}^{2} \wedge \cdots \wedge d x_{x}^{n}
$$

$$
\left\{\begin{array}{l}
\uparrow \text { where } G_{i j}:=g_{x}\left(\partial_{i}^{(h)}(x), \partial_{j}^{(h)}(x)\right) \\
\text { determinant of Gram/ Gramian }
\end{array}\right.
$$

Proof:

Then: $\quad \omega_{M}(x)\left(\partial_{1}^{(h)}(x), \partial_{2}^{(h)}(x), \ldots, \partial_{n}^{(h)}(x)\right)$

$$
\begin{aligned}
& =\omega_{M}(x)\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right)=f^{*} \omega_{M}(x)\left(v_{1}, \ldots, v_{n}\right) \\
& =\operatorname{det}(f) \underbrace{\omega_{M}(x)\left(v_{1}, \ldots, v_{n}\right)} \\
& =1 \\
& g_{x}\left(\partial_{i}^{(h)}(x), \partial_{j}^{(h)}(x)\right)=g_{x}\left(f\left(v_{i}\right), f\left(v_{j}\right)\right) \\
& \xrightarrow{\uparrow r_{1}} \xrightarrow{\uparrow} \xrightarrow{r_{1}} \\
& =g_{x}\left(\Phi^{-1} A \Phi\left(v_{i}\right), \Phi^{-1} A \Phi\left(v_{j}\right)\right) \\
& =\langle A \underbrace{\Phi\left(v_{i}\right)}_{e_{i}}, A \underbrace{\Phi\left(v_{j}\right)}_{e_{j}}\rangle_{\text {standard }}=\left(A^{\top} A\right)_{i j} \\
& \Rightarrow \operatorname{det}(G)=\operatorname{det}(A)^{2}
\end{aligned}
$$

Manifolds - Part 36

M orientable Riemannian manifold of dimension n. \longrightarrow canonical volume form $\omega_{M}(x)=\sqrt{\operatorname{det}(G)} d x_{x}^{1} \wedge \ldots \wedge d x_{x}^{n}\left(\begin{array}{l}h\end{array}\right.$ $\subseteq \mathbb{R}^{n}$

Examples: (a) $S^{2} \subseteq \mathbb{R}^{3}$ has parameterization given by spherical coordinates:

$$
\begin{aligned}
& \Phi(\theta, \varphi)=\left(\begin{array}{c}
\sin (\theta) \cos (\varphi) \\
\sin (\theta) \sin (\varphi) \\
\cos (\theta)
\end{array}\right) \\
\Rightarrow & G=\left(\begin{array}{cc}
1 & 0 \\
0 & \sin ^{2}(\theta)
\end{array}\right) \\
\Rightarrow & \omega_{M}(x)=\sin (\theta) d \theta \wedge d \varphi
\end{aligned}
$$

(b)

Graph surface: $f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad C^{\infty}$-function

$$
M:=\left\{(x, f(x)) \mid x \in \mathbb{R}^{2}\right\}
$$

2-dim. submanifold in \mathbb{R}^{3}

Use parametrization: $\quad \varphi: x \mapsto(x, f(x)), \quad h:(x, f(x)) \mapsto x$

$$
\begin{array}{ll}
\text { tangent vectors: } & \partial_{1}^{(h)}(p) \stackrel{\text { identify }}{=} \frac{\partial \varphi}{\partial x_{1}}(x)=\left(\begin{array}{c}
1 \\
0 \\
\frac{\partial f}{\partial x_{1}}(x)
\end{array}\right) \\
& \partial_{2}^{(h)}(p) \stackrel{\substack{\text { identify }}}{=} \frac{\partial \varphi}{\partial x_{2}}(x)=\left(\begin{array}{c}
0 \\
1 \\
\frac{\partial f}{\partial x_{2}}(x)
\end{array}\right)
\end{array}
$$

$$
\begin{gathered}
g_{i j}^{(h)}(p)=\left\langle\frac{\partial \varphi}{\partial x_{i}}(x), \frac{\partial \varphi}{\partial x_{j}}(x)\right\rangle_{\text {standard }}= \begin{cases}\frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{j}}, & i \neq j \\
1+\frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{j}} & i=j\end{cases} \\
\Rightarrow G=\left(\begin{array}{cc}
1+\left(\frac{\partial f}{\partial x_{1}}\right)^{2} & \frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}} \\
\frac{\partial f}{\partial x_{1}} \cdot \frac{\partial f}{\partial x_{2}} & 1+\left(\frac{\partial f}{\partial x_{2}}\right)^{2}
\end{array}\right) \\
\operatorname{det}(G)=1+\left(\frac{\partial f}{\partial x_{1}}\right)^{2}+\left(\frac{\partial f}{\partial x_{2}}\right)^{2}
\end{gathered}
$$

Canonical volume form: $\quad \omega_{M}(p)=\sqrt{1+\left(\frac{\partial f}{\partial x_{1}}\right)^{2}+\left(\frac{\partial f}{\partial x_{2}}\right)^{2}} d x_{\rho}^{1} \wedge d x_{\rho}^{2}$
Interesting fact: $\left\|\partial_{1}^{(h)}(p) \times \partial_{2}^{(h)}(p)\right\|_{\text {standard }}=\left\|\left(\begin{array}{c}1 \\ 0 \\ \frac{\partial f}{\partial x_{1}}(x)\end{array}\right) \times\left(\begin{array}{c}0 \\ 1 \\ \frac{\partial f}{\partial x_{2}}(x)\end{array}\right)\right\|_{\text {standard }}$

$$
=\left\|\left(\begin{array}{c}
-\frac{\partial f}{\partial x_{1}} \\
-\frac{\partial f}{\partial x_{2}} \\
1
\end{array}\right)\right\|_{\text {standard }}=\sqrt{\operatorname{det}(G)}
$$

Manifolds - Part 37

Definition: Let \widetilde{M} be a Riemannian manifold and $M \subseteq \widetilde{M}$. $A \operatorname{map} N: M \longrightarrow T \tilde{M}$

$$
\rho \mapsto N(\rho) \in T_{p} \tilde{M}
$$

is called a normal vector field.

$$
\text { and } N(p) \in\left(T_{p} M\right)^{\perp} \backslash\{0\} \quad\left(\operatorname{see} T_{p} M \subseteq T_{p} \tilde{M}\right)
$$

We call it continuous at p if for a chart (U, h) of \widetilde{M} holds:

$$
N(x)=\sum_{i} a_{i}(x) \cdot \partial_{i}^{(h)}(x)
$$

$$
\text { continuous functions } U \rightarrow \mathbb{R}
$$

We call it a continuous unit normal vector field if

- N is continuous at every $p \in M$
- $\|N(x)\|=\sqrt{g_{x}(N(x), N(x))}=1 \quad$ for all $x \in M$.

Important fact: $\quad M \subseteq \mathbb{R}^{n} \quad(n-1)$-dimensional submanifold:
(a) M is orientable $\Longleftrightarrow M$ has a continuous unit normal vector field

(b) If N is a continuous unit normal vector field, then:
$\left.\underset{\substack{\text { canonical } \\ \text { volume form }}}{\longrightarrow} \omega_{M}=N\right\lrcorner \operatorname{det}$
means:

$$
\omega_{M}(x)\left(v_{1}, \ldots, v_{n-1}\right)=\operatorname{det}\left(N(x), v_{1}, \ldots, v_{n-1}\right)
$$

Example:

$$
\left.\begin{array}{rl}
S^{2} \subseteq \mathbb{R}^{3}, \\
\sqrt{\operatorname{det}(G)}= & \omega_{M}(x)\left(\partial_{1}^{(h)}(x), \partial_{2}^{(h)}(x)\right)=\operatorname{det}\left(N(x), \partial_{1}^{(h)}(x), \partial_{2}^{(h)}(x)\right) \\
& =\operatorname{det}\left(\begin{array}{c}
\sin (\theta) \cos (\varphi) \\
\sin (\theta) \sin (\varphi) \\
\cos (\theta)
\end{array}\right) \\
=\sin (\theta) \sin (\varphi) \quad \cos (\varphi) \quad \cos (\theta) \cos (\varphi) \sin (\varphi) \\
\cos (\theta) & \sin (\theta) \sin (\varphi)
\end{array}\right)
$$

volume $=\underbrace{\text { height }}_{=1} \cdot$ area

