ON STEADY

Manifolds - Part 35

We already know: An orientable n-dimensional manifold M
has a non-trivial volume form
$$\omega \in \Omega^{n}(M)$$

Definition: Μ orientable Riemannian manifold of dimension N. Then the canonical volume form $\omega_{M} \in \Omega^{n}(M)$ is defined by: If $(v_1, v_2, ..., v_n)$ is a positively orientated basis of $T_p M$ and an orthonormal basis of $T_{p}M$ (ONB), $y_{p}(v_{i}, v_{j}) = \delta_{ij}$ then: $\omega_{M}(p)(v_{1}, v_{2}, ..., v_{n}) = 1$ <u>Proposition</u>: (M,g) orientable Riemannian manifold of dimension h. Let (U,h) be a chart such that the basis Μ $\left(\Im_{1}^{(h)}(x), \Im_{2}^{(h)}(x), \dots, \Im_{n}^{(h)}(x) \right)$ h Jy is positively orientated for all $x \in U$. dual basis $\subseteq \mathbb{R}^n$ $\omega_{M}(x) = \sqrt{\det(G)} dx_{x}^{1} \wedge dx_{x}^{2} \wedge \cdots \wedge dx_{x}^{n}$ $(\int where G_{ij} := g_{x} (\partial_{i}^{(h)}(x), \partial_{j}^{(h)}(x))$ determinant of Gram/ Gramian Proof: $\begin{pmatrix} \Im_{1}^{(h)}(x), \Im_{2}^{(h)}(x), \dots, \Im_{n}^{(h)}(x) \end{pmatrix} \xrightarrow{\text{Gram-Schmidt}} \begin{pmatrix} V_{1}, V_{2}, \dots, V_{n} \end{pmatrix} \begin{pmatrix} & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$ ONB linear map $\omega_{\mathsf{M}}(\mathsf{x})\left(\mathcal{J}_{1}^{(\mathsf{h})}(\mathsf{x}), \mathcal{J}_{2}^{(\mathsf{h})}(\mathsf{x}), \ldots, \mathcal{J}_{\mathsf{h}}^{(\mathsf{h})}(\mathsf{x}) \right)$ Then: $= \omega_{\mathsf{M}}(\mathsf{x}) \left(f(\mathsf{v}_{1}), f(\mathsf{v}_{2}), \dots, f(\mathsf{v}_{n}) \right) = f^{*} \omega_{\mathsf{M}}(\mathsf{x}) \left(\mathsf{v}_{1}, \dots, \mathsf{v}_{n} \right)$ $= \det(f) \quad \bigcup_{M}(x) \left(V_{1}, \dots, V_{n} \right)$ = 1 $g_{x} \left(\partial_{i}^{(h)}(x), \partial_{j}^{(h)}(x) \right) = g_{x} \left(f(v_{i}), f(v_{j}) \right)$ $= g_{x} \left(\overline{\Phi}^{-1} A \overline{\Phi}(\mathbf{v}_{i}), \overline{\Phi}^{-1} A \overline{\Phi}(\mathbf{v}_{j}) \right)$ γf ĮΦ

