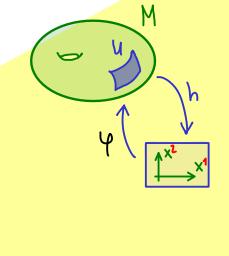
The Bright Side of Mathematics



Introduction to Ricci calculus / tensor calculus

Manifolds - Part 26

Coalculating in coordinates Spositions of indices matter (superscripts, subscripts)

our language	Ricci calculus
components of a given chart (U,h) , $h:U \longrightarrow \mathbb{R}^n$	$h^{j}: \mathbb{N} \longrightarrow \mathbb{R}$ coordinates or simply: $\chi^{1}, \chi^{1},, \chi^{n}$
coordinate basis of $T_pM:$ $\partial_j := \Psi_*(e_j)$	$\frac{3x_1}{3}$ $\frac{3x_1}{3}$ \dots $\frac{3x_n}{3}$

	(\mathcal{U},h) , $h: \mathcal{U} \longrightarrow \mathbb{R}^{n}$	or simply: $\chi^1, \chi^2,, \chi^n$
	coordinate basis of T_pM : $\partial_j := \psi_*(e_j)$	$\frac{\partial}{\partial x^1}$ / $\frac{\partial}{\partial x^2}$ / / $\frac{\partial}{\partial x^n}$
	tangent vector $[\gamma] \in T_p M$: $V_1 \partial_1 + V_2 \partial_2 + \cdots + V_n \partial_n$	$V^{1} \frac{\partial}{\partial x^{1}} + \dots + V^{n} \frac{\partial}{\partial x^{n}} =: V^{\frac{1}{2}} \frac{\partial}{\partial x^{\frac{1}{2}}}$ (Einstein summation convention)
Later:	inner product on T_pM : $\langle v,w\rangle \in \mathbb{R}$	contravariant vector VigjkWk tensor
dual to a contravariant vector: $\bigvee_{j} dx^{j}$ $\searrow one-form (\sim linear map)$		
	(1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	

 $dx_{j}(\partial_{k}) = \begin{cases} 1 & , j = k \\ 0 & , j \neq k \end{cases} \qquad dx^{j}(\frac{\partial}{\partial x^{k}}) = \delta^{j}_{k}$ Kronecker delta