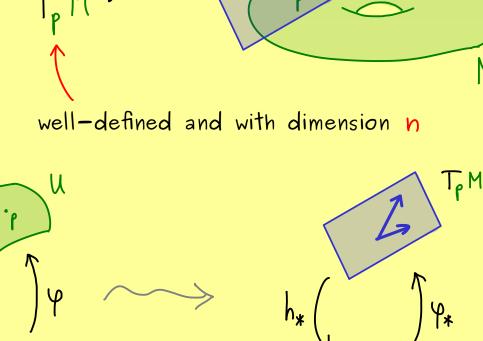


The Bright Side of



For submanifolds: $T_p M \longrightarrow T_p^{sub} M$

Remember:

Soon:

For (U,h) and $p \in U$, we define: $\partial_j := \psi_*(e_j)$

where $(e_1, e_1, ..., e_n)$ is the standard basis of \mathbb{R}^n

Definition:

chart (U,h): coordinate basis (standard basis with respect to (U,h)):

 $\left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n} \right)$ is essentially $\left(\frac{\partial \psi}{\partial x_1}(\tilde{r}), \frac{\partial \psi}{\partial x_2}(\tilde{r}), \dots, \frac{\partial \psi}{\partial x_n}(\tilde{r}) \right)$

 $f: M \longrightarrow N$ smooth $\longrightarrow df_p: T_p M \longrightarrow T_p N$ differential

dimension.

TpM

defined by: $h_*: T_pM \longrightarrow \mathbb{R}^n$ $([\gamma] \mapsto (h_0 \gamma)'(0)$ linear + bijective

Mathematics Manifolds - Part 22 smooth manifold M of dimension \boldsymbol{n} , $\boldsymbol{\rho} {\in} \, M$.