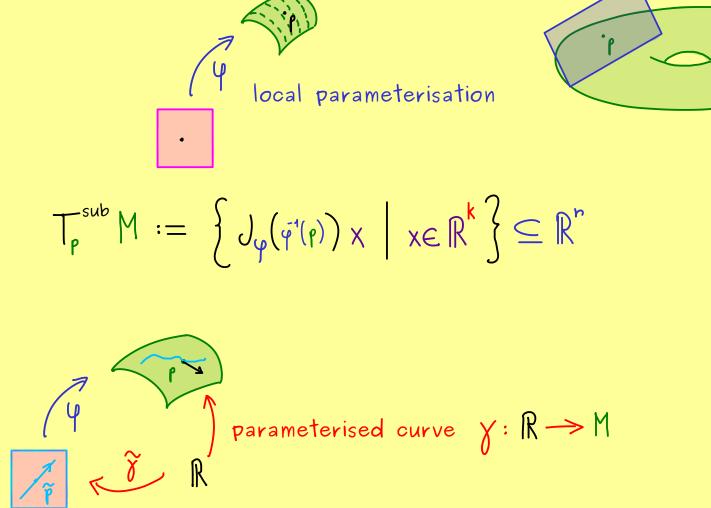
Idea:

The Bright Side of Mathematics



Manifolds - Part 20

tangent space for submanifold $M \subseteq \mathbb{R}^n$, $\rho \in M$

Proposition:
$$T_p^{\text{sub}} M = \{ \chi'(0) \mid \chi: (-\epsilon, \epsilon) \rightarrow M \text{ differentiable with } \chi(0) = p \}$$

Tesub M

Proof: (
$$\subseteq$$
) $V \in T_p^{sub} M \Rightarrow V = J_{\varphi}(\tilde{y}^1(p)) \times \text{ for } X \in \mathbb{R}^k$, φ local parameterisation $\Rightarrow V = J_{\varphi}(\tilde{y}^1(0)) \tilde{y}^1(0)$ with $\tilde{y}^1(0) = \tilde{p}^1 + t \times \tilde{y}^1 : (-\varepsilon, \varepsilon) \to \mathbb{R}^k$ $= \frac{d}{dt} (\varphi \circ \tilde{y}) \Big|_{t=0} = y^1(0)$ (\supseteq) Take: $y: (-\varepsilon, \varepsilon) \to M$ differentiable with $y(0) = p$