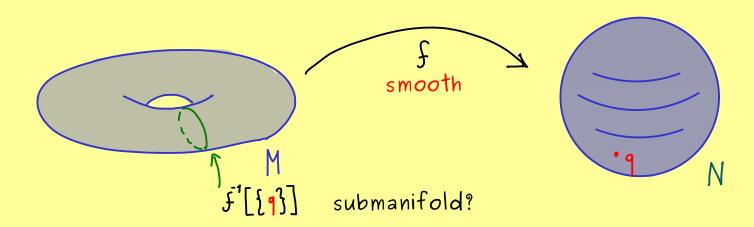
ON STEADY

The Bright Side of Mathematics

Manifolds - Part 18

Regular Value Theorem:



Let M, N be smooth manifolds of dimension m and n $(m \ge n)$, $f: M \longrightarrow N$ be a <u>smooth</u> map, and $q \in N$ be a regular value of f. $(\Rightarrow f^{\dagger}[\{q\}]]$ does not contain critical points $\Rightarrow p \in M$ is called a critical point of f if rank $f_p := rank (J_{k \circ f \circ k^{-1}}(h(p)))$

is less than h (not maximal!).

Then: $f'[\{q\}]$ is a (m-n)-dim submanifold of M.

Example: (a)
$$GL(d, \mathbb{R}) := \{A \in \mathbb{R}^{d \times d} \mid det(A) \neq 0\}$$
 is manifold of dimension d^2 .
(b) $Sym(d \times d, \mathbb{R}) := \{B \in \mathbb{R}^{d \times d} \mid B^T = B\}$ is manifold of dimension $\frac{d(d+1)}{2}$
 $d^2 - d$ $(D = 0)$ $d^2 - \frac{d^2 - d}{2}$

$$\mathcal{L}$$
 \backslash \smile \Box $/$

(c) $O(d,R) := \{ A \in GL(d,R) \mid A^T A = 1 \}$ is a submanifold of GL(d,R)

Proof:
$$f: GL(d, R) \longrightarrow Sym(d \times d, R)$$
, $f(A) = A^{T}A$

Two things to show: (1)
$$\int \left[\left\{ 1 \right\} \right] = O(d, R)$$

(2) 1 is a regular value of f

$$\frac{\text{Case } d = 2:}{\begin{pmatrix} x_{1}, x_{2} \\ x_{3}, x_{4} \end{pmatrix}} \xrightarrow{\text{GL}(d, R)} \xrightarrow{\text{F}} \xrightarrow{\text{Sym}(d + d, R)} \xrightarrow{(x_{1}, x_{2})} \xrightarrow{(x_{1}, x_{2})} \xrightarrow{\text{GL}(d, R)} \xrightarrow{(x_{1}, x_{2})} \xrightarrow{(x_{1}, x_{2})} \xrightarrow{\text{R}} \xrightarrow{\text{F}} \xrightarrow{(x_{1}, x_{2})} \xrightarrow{\text{F}} \xrightarrow{(x_{1}, x_{2})} \xrightarrow{\text{F}} \xrightarrow{(x_{1}, x_{2})} \xrightarrow{\text{F}} \xrightarrow{(x_{1}, x_{2})} \xrightarrow{(x$$

$\Rightarrow O(d,R)$ is a submanifold of dimension $d = \frac{1}{2} = \frac{1}{2}$

If