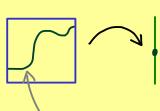
ON STEADY

The Bright Side of Mathematics

Manifolds - Part 15

Regular value theorem in \mathbb{R}^n = preimage theorem = submersion theorem $\int : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ smooth



preimage = smooth submanifold?

<u>Definition:</u> $f: U \longrightarrow \mathbb{R}^m$, $U \subseteq \mathbb{R}^n$ open, C^1 -function.

- (1) $x \in U$ is called a <u>critical point</u> of f if df_x is not surjective (or $J_f(x)$ has rank less than m)
- (2) $c \in \int [U]$ is called a <u>regular value</u> of f if $\int_{-1}^{-1} [\{c\}]$ does not contain any critical points.

Theorem:

$$f: U \longrightarrow \mathbb{R}^m$$
 , $U \subseteq \mathbb{R}^n$ open , C^{∞} -function. $(n \ge m)$

If C is a regular value of f, then

$$\int_{-1}^{-1} [\{c\}]$$
 is an $(n-m)$ -dimensional submanifold of \mathbb{R}^n .

Proof: Use implicite function theorem.

Example:

$$f \colon \mathbb{R}^h \longrightarrow \mathbb{R} \quad , \quad f(x_1, \dots, x_h) = x_1^1 + x_1^1 + \dots + x_h^1$$

$$J_f(x_1, \dots, x_h) = (2x_1 \quad 2x_2 \quad \dots \quad 2x_h)$$

 \Rightarrow x = 0 is the only critical point.

Hence: 1 is a regular value.

$$\implies \int^{-1} [\{1\}] = \int^{h-1} \text{ submanifold of } \mathbb{R}^h.$$