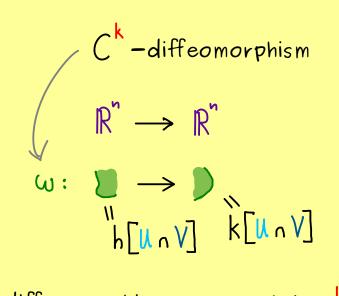
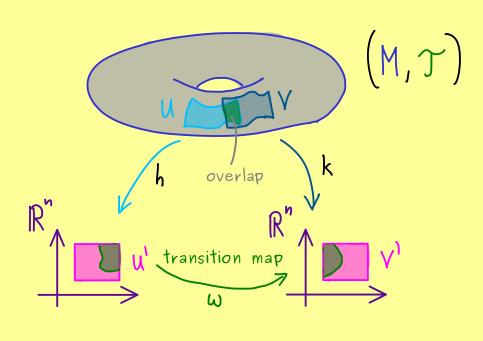
ON STEADY

The Bright Side of Mathematics

Manifolds - Part 12

Smooth structures





 $\frac{C^{k}-diffeomorphism}{k \in \{0,1,...\}}$

or $k = \infty$

- W is k -times continuously differentiable (partial derivatives up to the k-th order exist and are continuous) $W \in C^k(\cdot)$
 - W is bijective
 - $\omega^{-1} \in C^{k}(\cdots)$

<u>Definition:</u> • Two charts h, k are called $\frac{C^k}{-}$ smoothly compatible if the transition map is a C^k -diffeomorphism.

- An atlas $\left\{ \left(\bigcup_{i}, h_{i} \right)_{i \in I} \right\}$ is called a C^{k} -atlas if any two charts are C^{k} -smoothly compatible.
- A maximal C^k -atlas A is: (1) A is a C^k -atlas
 - (2) For any other C^{k} —atlas B, we have $B \not= A$.

Definition: n-dimensional $C^{k}-smooth$ manifold:

- n-dimensional (topological) manifold
- maximal C^{k} -atlas $(C^{k}$ -smooth structure)