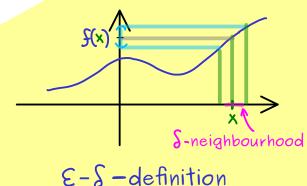
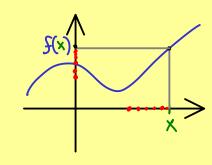
ON STEADY

The Bright Side of Mathematics

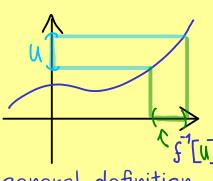
Manifolds - Part 7



 ε - δ -definition



sequence definition



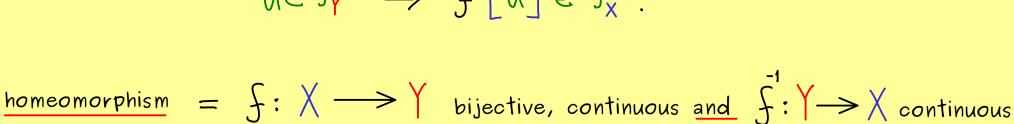
 (Y, γ_Y)

general definition

<u>Definition</u>: $(X, T_X), (Y, T_Y)$ topological spaces.

 $f: X \longrightarrow Y$ is called <u>continuous</u> if

 $U \in \mathcal{T}_{\mathbf{v}} \implies f^{1}[\mathbf{u}] \in \mathcal{T}_{\mathbf{v}}$



 $\frac{\text{Examples:}}{\text{(a)}} \left(\begin{array}{c} \text{(a)} \\ \text{(b)} \end{array} \right) = \text{indiscrete topological space} \implies \text{$f: X \rightarrow Y$ continuous}$

(b)
$$(X, T_X) = \text{discrete topological space} \implies f: X \longrightarrow Y \text{ continuous}$$

(c) (X,T_X) with equivalence relation \sim , $(X/_{\sim},\hat{T})$ quotient space

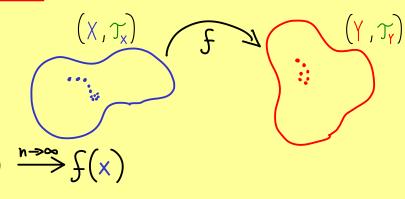
 $q: X \longrightarrow X/_{\sim}, X \mapsto [X]_{\sim}$ canonical projection is continuous

<u>Definition</u>: $(X, T_X), (Y, T_Y)$ topological spaces.

 $f: X \longrightarrow Y$ is called <u>sequentially continuous</u> if for all $x \in X$:

 $(x_n)_{n \in \mathbb{N}} \subseteq X$ with $x_n \stackrel{h \to \infty}{\longrightarrow} X$

 $(f(x_n))_{n\in\mathbb{N}}\subseteq Y$ convergent with $f(x_n)\xrightarrow{n\to\infty} f(x)$



Fact:

 $f: X \longrightarrow Y$ continuous \iff $f: X \longrightarrow Y$ sequentially continuous in metric spaces second-countable spaces