ON STEADY

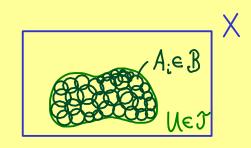
The Bright Side of Mathematics

Manifolds - Part 6

(X,T) topological space: generate the topology T

<u>Definition</u>: Let (X, T) be a topological space. A collection of open subsets

 $B \subseteq T$ is called a basis (base) of T if: for all $U \in T$ there is $(A_i)_{i \in I}$ with $A_i \in B$



and $\bigcup_{i \in I} A_i = U$

<u>Examples:</u>

(a) B = T is always a basis.

(b) If \mathcal{T} is discrete topology on X, then $\mathcal{B} = \{X\} \mid X \in X\}$ is a basis of \mathcal{T} .

(c) Let (X, \mathcal{T}) be the topological space induced by a metric space (X, d) $B = \{B_{\varepsilon}(x) \mid x \in X, \varepsilon > 0\}$ is a basis of \mathcal{T} .

(d) \mathbb{R}^n with standard topology (defined by Euclidean metric)

$$\mathcal{B} = \{ \mathcal{B}_{\varepsilon}(x) \mid x \in \mathbb{Q}, \varepsilon \in \mathbb{Q}, \varepsilon > 0 \} \text{ is a basis of } \mathcal{T}.$$

only countably many elements

Definition: A topological space (X, \mathcal{T}) is called <u>second-countable</u> if there is a countable basis of \mathcal{T} .