


ON STEADY

The Bright Side of Mathematics Manifolds - Part 4 P'(R) = set of 1-dimensional subspaces of Rⁿ⁺¹Projective space: the directions define a set + topology? Quotient topology: (X, \mathcal{T}) topological space, ~ equivalence relation on X ↓ reflexive x~x symmetric $x \sim \gamma \Rightarrow \gamma \sim x$ transitive $x \sim \gamma \wedge \gamma \sim z \Rightarrow x \sim z$ equivalence class of $X : [X]_{\sim} := \begin{cases} \gamma \in X \mid \gamma \sim x \end{cases}$ $X/_{\sim} := \left\{ [x] \mid x \in X \right\}$ quotient set q: $X \longrightarrow X/_{\sim}$, $x \mapsto [x]_{\sim}$ canonical projection X/~ q¹[U] Х $q^{1}[U] \subseteq X$ open $\iff U \subseteq X/_{\sim}$ open

