ON STEADY

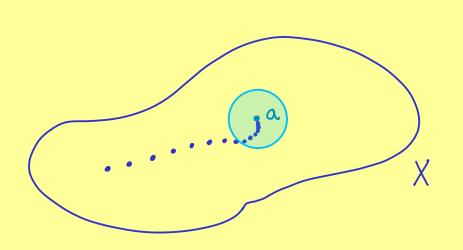
The Bright Side of Mathematics

Manifolds - Part 3

(X,T) topological space

Convergence:

$$(a_n)_{n \in \mathbb{N}}$$
, $a_n \in X$ converges to $a \in X$



In a metric space:

The sequence members lie in each ε -ball around α , eventually.

For each \mathcal{E} -ball $\mathcal{B}_{\varepsilon}(a)$, there is $N \in \mathbb{N}$ such that for all $n \geq N$: $a_n \in \mathcal{B}_{\varepsilon}(a)$

In a topological space:

The sequence members lie in each open neighbourhood of a eventually.

an open set UET with $\alpha \in U$

<u>Definition</u>: (X,T) topological space, $(a_n)_{n \in \mathbb{N}}$ sequence in X.

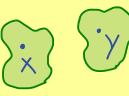
 $a_n \xrightarrow{n \to \infty} a : \iff$ For each UET with $a \in U$, there is $N \in \mathbb{N}$ such that for all $n \ge \mathbb{N}$: $a_n \in \mathbb{N}$

Example: $X = \mathbb{R}$, $T = \{ \phi, \mathbb{R} \} \cup \{ (b, \infty) \mid b \in \mathbb{R} \}$

$$\left(a_{n}\right)_{n\in\mathbb{N}} = \left(\frac{1}{n}\right)_{n\in\mathbb{N}}$$

- converges to 0: each open neighbourhood of 0 looks like (b, ∞) for b < 0, so: $\frac{1}{n} \in (b, \infty)$
- converges to -1: each open neighbourhood of -1 looks like $(b, \infty) \ \text{for} \ b < -1, \ so:} \ \frac{1}{n} \in (b, \infty)$
- converges to -1

Definition: A topological space (X,T) is called a <u>Hausdorff space</u> if for all $X,Y \in X$ with $X \neq Y$ there is an open neighbourhood of $X: U_X \in T$ and there is an open neighbourhood of $Y: U_Y \in T$



with: $U_X \cap U_Y = \emptyset$