## The Bright Side of Mathematics



(3)  $(A_i)_{i \in I}$  with  $A_i \in \mathcal{T}$  $\Rightarrow \bigcup_{i \in T} A_i \in \Upsilon$ 

is called a topological space.

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

$$(X,T) \text{ topological space}, \quad S \subseteq X \text{ , pe} X$$

- (b) p exterior point of S:  $\Leftrightarrow$  There is an open set  $U \in T$ :  $p \in U$  and  $U \subseteq X \setminus S$
- $U \setminus \{p\} \cap S \neq \emptyset$ More names: (a)  $S^{\circ} := \{p \in X \mid p \text{ interior point of } S\}$  interior of S(b)  $\operatorname{Ext}(S) := \{ p \in X \mid p \text{ exterior point of } S \}$  exterior of S
- (c)  $\Im S := \{ p \in X \mid p \text{ boundary point of } S \}$  boundary of S(d)  $S' := \{ p \in X \mid p \text{ accumulation point of } S \}$  derived set of S(e)  $\overline{S} := S \cup \partial S$  closure of S
- Example:  $X = \mathbb{R}$ ,  $T = \{ \emptyset, \mathbb{R} \} \cup \{ (a, \infty) \mid a \in \mathbb{R} \}$
- S = (0,1) not an open set! no interior points: there is no  $\emptyset \neq U \in \mathcal{T}$  with  $U \subseteq S$  $\Rightarrow$   $S^{\circ} = \phi$  $X \setminus S = (-\infty, 0] \cup [1, \infty) \implies E_X t(S) = (1, \infty)$
- $\Rightarrow \partial S = (-\infty, 1] \Rightarrow \overline{S} = (-\infty, 1]$

- (c) p boundary point of  $S:\iff$  For all open sets  $U\in \mathcal{T}$  with  $p\in U:$  U  $U\cap S\neq \emptyset \text{ and } U\cap (X\setminus S)\neq \emptyset$
- (X,T) is called a <u>topological space</u>.