

Manifolds - Part 29

M smooth manifold of dimension $n \implies T_pM$ n-dimensional vector space

Definition:

$$\omega: M \longrightarrow \bigcup_{\rho \in M} Alt^{k}(T_{\rho}M)$$

$$\rho \longmapsto \omega_{\rho} = \omega(\rho) \in Alt^{k}(T_{\rho}M)$$

is called a k-form on M.

we also define: $\omega \wedge \eta$ as $(\omega \wedge \eta)(\rho) := \omega(\rho) \wedge \eta(\rho)$ $f^*\omega \qquad \text{as} \qquad (f^*\omega)(\rho) := (df_\rho)^*\omega(f(\rho))$ $f: N \longrightarrow M \text{ smooth}$

Basis elements:

basis of
$$T_p M : \left(\partial_1, \partial_2, \dots, \partial_n \right)$$
 with $\partial_j := \varphi_*(e_j) = d\varphi_{h(p)}(e_j)$

basis of
$$\left(T_{p} M \right)^{*} = Alt^{1} \left(T_{p} M \right) : \left(dx_{p}^{1}, dx_{p}^{2}, \dots, dx_{p}^{n} \right)$$

defined by: $dx_{p}^{j} \left(\partial_{k} \right) = \delta_{k}^{j} = \begin{cases} 1, j = k \\ 0, j \neq k \end{cases}$

<u>Proposition:</u> A basis of $Alt^{k}(T_{p}M)$ is given by:

$$\left(dx_{p}^{\mu_{1}} \wedge dx_{p}^{\mu_{2}} \wedge \cdots \wedge dx_{p}^{\mu_{k}} \right)_{\mu_{1} < \mu_{2} < \cdots < \mu_{k}}$$

Conclusion: Each k-form on M can locally be written as:

$$\omega(\mathbf{p}) = \sum_{\mu_1 < \dots < \mu_k} \omega_{\mu_1, \mu_2, \dots, \mu_k}(\mathbf{p}) \cdot d\mathbf{x}_{\mathbf{p}}^{\mu_1} \wedge d\mathbf{x}_{\mathbf{p}}^{\mu_2} \wedge \dots \wedge d\mathbf{x}_{\mathbf{p}}^{\mu_k}$$

$$\omega_{\mu_1,\mu_2,\cdots,\mu_k}: U \longrightarrow \mathbb{R}$$
 component functions

Definition: If all component functions are differentiable at ρ , then ω is differentiable at ρ .

• If ω is differentiable at all $p \in M$, then ω is called a differential form on M. $\Omega^k(M) := C^{\infty}(M)$