

Manifolds - Part 29

M smooth manifold of dimension $n \implies T_p M$ n -dimensional vector space

Definition:

$$\omega: M \longrightarrow \bigcup_{\rho \in M} Alt^{k}(T_{\rho}M)$$

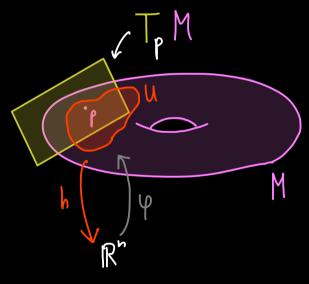
$$\rho \longmapsto \omega_{\rho} = \omega(\rho) \in Alt^{k}(T_{\rho}M)$$

is called a k-form on M.

We also define:

$$\omega \wedge \eta$$
 as $(\omega \wedge \eta)(\rho) := \omega(\rho) \wedge \eta(\rho)$
 $f^*\omega$ as $(f^*\omega)(\rho) := (df_\rho)^*\omega(\rho)$
 $f: N \longrightarrow M$ smooth

Basis elements:



basis of
$$T_p M : \left(\partial_1, \partial_2, \dots, \partial_n \right)$$
 with $\partial_j := \varphi_*(e_j) = d\varphi_{h(p)}(e_j)$

basis of
$$\left(T_{p}M\right)^{*}=Alt^{1}\left(T_{p}M\right):\left(dx_{p}^{1},dx_{p}^{2},...,dx_{p}^{n}\right)$$
defined by: $dx_{p}^{j}\left(\partial_{k}\right)=\delta_{k}^{j}=\left\{ \begin{array}{c} 1 \\ 0 \end{array}, \begin{array}{c} j=k \\ 0 \end{array}, \begin{array}{c} j\neq k \end{array} \right.$

Proposition: A basis of $Alt^{k}(T_{\rho}M)$ is given by:

$$\left(dx_{p}^{\mu_{1}} \wedge dx_{p}^{\mu_{2}} \wedge \cdots \wedge dx_{p}^{\mu_{k}} \right)_{\mu_{1} < \mu_{2} < \cdots < \mu_{k}}$$

Example:
$$dim(M) = 3$$
, $Alt^{2}(T_{p}M)$:
$$\left(dx_{p}^{1} \wedge dx_{p}^{2} \wedge dx_{p}^{3} \wedge dx_{p}^{3} \wedge dx_{p}^{3} \wedge dx_{p}^{3} \right)$$

Conclusion: Each k-form on M can locally be written as:

$$\omega(\mathbf{p}) = \sum_{\mu_1 < \dots < \mu_k} \omega_{\mu_1, \mu_2, \dots, \mu_k}(\mathbf{p}) \cdot d\mathbf{x}_{\mathbf{p}}^{\mu_1} \wedge d\mathbf{x}_{\mathbf{p}}^{\mu_2} \wedge \dots \wedge d\mathbf{x}_{\mathbf{p}}^{\mu_k}$$

$$\omega_{\mu_1,\mu_2,\cdots,\mu_k}: U \longrightarrow \mathbb{R}$$
 component functions

Definition: If all component functions are differentiable at ρ , then $\,\omega\,$ is differentiable at $\,\rho\,.$

• If ω is differentiable at all $p \in M$, then ω is called a differential form on M. $\omega \in \Omega^k(M)$ $\Omega^k(M) := C^\infty(M)$