Manifolds - Part 22

smooth manifold M of dimension n , $\rho \in M$.

well-defined and with dimension n

chart (U,h):

$$h_* : T_p M \longrightarrow \mathbb{R}^n$$

$$([\gamma] \mapsto (h \circ \gamma)'(0)$$

$$linear + bijective$$

$$(\varphi_* := h_*^{-1}$$

<u>Definition:</u> coordinate basis (standard basis with respect to (U,h)):

For (U,h) and $p \in U$, we define: $\partial_i := \psi_*(e_i)$

where (e_1, e_1, \dots, e_n) is the standard basis of \mathbb{R}^n

For submanifolds: Remember:

$$\underline{\text{Soon:}} \qquad f \colon M \longrightarrow N \quad \text{smooth} \quad \longrightarrow \quad df \colon T_p M \longrightarrow T_p N \quad \text{differential}$$