Manifolds - Part 5

$$(X,T)$$
 topological space \longrightarrow $(X/\!\!\!/,\hat{T})$ quotient space

<u>Projective space:</u> $P^{n+1}(\mathbb{R}) = \text{set of } 1-\text{dimensional subspaces of } \mathbb{R}^{n+1}$

$$S^{n} \subseteq \mathbb{R}^{n+1}$$

$$S^{n} := \left\{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \right\}$$

$$\text{Euclidean norm}$$

equivalence relation: $X \sim -X$

Let's define: $\chi \sim \gamma : \iff \left(x = y \text{ or } \chi = -y \right)$

$$P'(R) := S'/\sim$$
 with quotient topology

Is P(R) a Hausdorff space?

Take
$$[x]_{\sim}$$
, $[y]_{\sim} \in P^{n}(\mathbb{R})$ with $[x]_{\sim} \neq [y]_{\sim} \implies x \neq y$ and $x \neq -y$

Take open neighbourhoods

$$U, V \subseteq S$$
 of x and y, respectively,

with
$$U \cap V = \emptyset$$
, $-U \cap V = \emptyset$ $\begin{bmatrix} Y \end{bmatrix}_{\sim}$ $-U \cap -V = \emptyset$

