

 $\left(a_{n} \right)_{n \in \mathbb{N}} = \left(\frac{1}{n} \right)_{n \in \mathbb{N}}$

0

converges to 0: each open neighbourhood of 0 looks like
$$(b, \infty)$$
 for $b < 0$, so: $\frac{1}{h} \in (b, \infty)$

• converges to -1: each open neighbourhood of -1 looks like (b, ∞) for b < -1, so: $\frac{1}{n} \in (b, \infty)$ • converges to -2 Definition: A topological space (X, \mathcal{T}) is called a <u>Hausdorff space</u> if for all $X, Y \in X$ with $X \neq Y$ there is an open neighbourhood of $X: U_X \in \mathcal{T}$ and there is an open neighbourhood of $Y: U_Y \in \mathcal{T}$ with: $U_X \cap U_Y = \phi$