Manifolds - Part 3

(X,T) topological space

 $(a_n)_{n\in\mathbb{N}}$, $a_n\in X$ Convergence: converges to $\alpha \in X$

In a metric space:

The sequence members lie in each E-ball around (, eventually.

For each ε -ball $B_{\varepsilon}(a)$, there is $N \in \mathbb{N}$ such that for all $n \ge N$: $a_n \in \hat{\mathcal{B}}_{\varepsilon}(a)$

In a topological space:

open neighbourhood of α an open set WET with ae U

<u>Definition</u>: (X,T) topological space, $(a_n)_{n \in \mathbb{N}}$ sequence in X.

 $a_n \xrightarrow{h \to \infty} a : \iff$ For each $U \in T$ with $a \in U$, there is $N \in \mathbb{N}$ such that for all n≥N: ane U

Example: $X = \mathbb{R}$, $T = \{ \emptyset, \mathbb{R} \} \cup \{ (1, \infty) \mid 1 \in \mathbb{R} \}$

$$\left(a_{n}\right)_{n\in\mathbb{N}} = \left(\frac{1}{n}\right)_{n\in\mathbb{N}}$$

- converges to 0: each open neighbourhood of 0 looks like (b, ∞) for b < 0, so: $\frac{1}{b} \in (b, \infty)$
- converges to -1: each open neighbourhood of -1 looks like (b, ∞) for b < -1, so: $\frac{1}{n} \in (b, \infty)$
- converges to -2

Definition:

A topological space (X,T) is called a Hausdorff space if

for all $x,y \in X$ with $x \neq y$ there is an open neighbourhood of $x: U_x \in T$

and there is an open neighbourhood of y: $U_y \in T$

with: $U_{x} \cap U_{y} = \phi$