Manifolds - Part 2

$$T \subseteq P(X)$$
 topology on $X:$ (1) $\emptyset, X \in T$

(2)
$$A,B \in \mathcal{T} \implies A \cap B \in \mathcal{T}$$

(3)
$$(A_i)_{i \in I}$$
 with $A_i \in \mathcal{T}$

$$\implies \bigcup_{i \in I} A_i \in \mathcal{T}$$

(X,T) is called a topological space.

Important names: (X,T) topological space, $S\subseteq X$, $p\in X$

(a)
$$p$$
 interior point of $S:\iff p\in \mathcal{U}$ and $\mathcal{U}\subseteq S$

(b)
$$p$$
 exterior point of S : \Leftrightarrow There is an open set $U \in T$: $p \in U$ and $U \subseteq X \setminus S$

(c) p boundary point of
$$S:\iff$$
 For all open sets $U\in \mathcal{T}$ with $p\in U:$ U
$$U\cap S\neq \emptyset \text{ and } U\cap (X\setminus S)\neq \emptyset$$

(d) p accumulation point of
$$S:\iff$$
 For all open sets $U\in T$ with $p\in U:U\setminus \{p\}\cap S\neq \emptyset$

More names: (a)
$$S^{\circ} := \{p \in X \mid p \text{ interior point of } S\}$$
 interior of S

(b)
$$\operatorname{Ext}(S) := \{ p \in X \mid p \text{ exterior point of } S \}$$
 exterior of S

(c)
$$\partial S := \{ p \in X \mid p \text{ boundary point of } S \}$$
 boundary of S

(d)
$$S' := \{ p \in X \mid p \text{ accumulation point of } S \}$$
 derived set of S

(e)
$$\overline{S} := S \cup \partial S$$
 closure of S

Example:
$$X = \mathbb{R}$$
, $T = \{\emptyset, \mathbb{R}\} \cup \{(a, \infty) \mid a \in \mathbb{R}\}$
 $S = (0,1)$ not an open set!

No interior points: there is no $\emptyset \neq \emptyset \in T$ with $\emptyset \subseteq S$
 $\Rightarrow S^{\circ} = \emptyset$
 $X \setminus S = (-\infty, 0] \cup [1, \infty) \Rightarrow Ext(S) = (1, \infty)$
 $\Rightarrow \partial S = (-\infty, 1] \Rightarrow \overline{S} = (-\infty, 1]$