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/\_,
generalised surfaces? ,\"\/
Q
/\-
st

How to calculate on them?

V
topology differentiable differential forms
manitolds ds j&w

—> (generalised) Stokes's Theorem

><

Metric space: (

,4)

distance function

S

set

open €-ball B (x) X

~n=> define open sets Ac X
Definition:  Let X be a sef, ?(X) be the power set,

and ] C /l)()() be a collection of subsets,

1f T satisfies: (1) ¢,><€T
(2) N Be T :> AnB e T
@) (A) , wth Ae T = Ul eT

el

then J is ocalled a topology on x )

The elements of ] are called open sefs,

Examples: (a) T = igj, ><} is a fopology on >< (indiscrete topology)

(b) ’:]" — ?(X) is a topology on >< (discrete topology)
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T C /')()O topology on X () ¢, ><€ T
2) A,BeT = AabeT
(3) (AL)M with Ao T
:> UAo cT

el

(X,T) is called a fopological space.

Important names: (X}T) tfopological space Sg >< / FQ ><

u

. : , There is an open set MQT
o p et et S pell i US S @

U
(b) P exterior point of S & ThU\ open :r ch—:\}’ :
FQ. and - X

For all open sefs M(‘:T with PQ. M: U

(c) boundary point of § &> : ,
F ¢ v unS;éysawcl Mn(X\5)¢¢ X

(d) P acoumulation point of § <> For all open sets we'J it P& W:

\A\EPSHS 75¢ X

More names: (a) SO 0 — iFGX | P interior point of 5} interior of S

(b) Ext<5) 0 — iFGX | F exterior point of 5} exterior of S

(c) gS . — iFeX | F boundary point of S} boundary of S

(d) 5);: {FG_X | F accumulation point of 5} derived set of 5

(e) S = SudS  closue of S

Example: X:R, T = £¢,R} U 5‘(0\,00) | QGR%

S = (O 4) £~ ot an open sef:
- /
Y—\

no interior points: there is no Qf#MQT with W < S
= S°= ¢
X\S = Coo]ult,e) => Ext(S) = (1,00)

= S =, 1] = S =(w, i
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(X | T) topological space

Convergence: (0‘“>he|N ; A& X

converges To O & X

In a melric space: The sequence members lie in
g each €—=ball around 0O, eventually,

For each €—ball BA«), there is NGN such that
for all n=N : o‘he:BE(o\)

In a topological space: The sequence members lie in
. each open neighbourhood of 0. eventually,
an open set WeT  with
ae U

Definition: (X/T) topological space (O\n>h€N seguence in X .

h—a0

a, —> a <:> For each MGT with ae W, there is NQN

such that for all n =N : N u
h

Example: X:[R, T:{_gﬁ,ﬂ{}k) i(l,,()o)| L e ﬂ{}
(0‘“>he|N . (17>nem

» converges to (O : each open neighbournood of O looks like

(L, OO) for b< 0, so: %Q U:, OO)

¢ converges to -/: each open neighbourhood of —1 looks like
(l‘)/ OO) ‘FOY L<"1, SO. %G (L/ OO)

¢ converges to —7

Definition: A topological space (X,T) is called a Hausdorff space if

for all X,>/€ >< with X #Y there is an open neighbourhood of X: U, €T
and there is an open neighbourhood of)l: uyeT

@ @ with: Mx N uy _ §2§
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Projective space: P (R) — set of 1—dimensional subspaces of (R

AN RN
the directions

—~ define a set
+ topology?

Quotient topology: (X,T) fopological space, /v equivalence relation on X

L veflexive  x~x
symmetric x~vy => y~X
transifive Xvya yvz > x~z

equivalence olass of x :  [x] = {ye)( ‘ y~ }
X/n =zz[><]N ‘ G X}g quotient set

1: >< —> ></N , AE> [X]N canonical projection

/';\\A U

c \
\ J

X i'i[u] open?
Oﬂﬂ] = K oven &> e Xy open
WeT &0 leT

AL

N
This defines a topology T on X/N, called the guotient topology.

Mébius strip

Example:

equivalence relation: (0,5) ~ (1,—5)
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(X /T) fopological space ~~> <></NI > quotient space

Projective space: Ph(ﬁ{) — set of 1—=dimensional subspaces of (R

h n+1 N 5‘1
s <R ah
h n+i
S <= {XG: (R = 1%
N Euclidean norm
N

equivalence relation: X~ =X /
Let's define: X~y > (X“—‘)/ or X=—)/> J >

Ph((R) P = Sh/v with guotient topology

Is P"(ﬂ{) a Hausdorff space? O O

Take [x]N,[y]NEPh(fR) with [X]N% [Y]N => X#Y and X#-y

>~
Take open neighbourhoods

h [x].
U,\/ - S of % and >/ , respectively, /

with UAVZQS ,—UA\/:QS [ﬂ,\,\/
‘Uﬂ-\/=@/, Un—\/:yﬁ

A W n
Look at: W\ i= CII:U\] ; ﬂ‘ S —> S/,v canonical projection

7' L0 = Ul ner = he?

OPGH N§ open

(’rhe same for A 3= c1|:\/]>
wo st 3| 0nV] = 4001 L) =(0uc W) n (VoY) = o

ﬁ sumec’ﬂve /\

S (V= ¢
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(X | T) tfopological space: generate the topology T

Definition:  Let (X,T) be a fopological space., A collection of open subsets

QgQ’T is called a basis (base) of T if:
tor all MQT there is (AD“T with AL€ CE
and UAL — M

el

Semales; (e Q% =T s always a basis,
(b) If T s discrete topology on X, then CE :ii } ‘ QX}
is a basis of /T

(c) Let (X,T) be the topological space induced by a metric space (X,A>

3 = igeg ‘ eX,e>0} s a basis of T

(d) o . .
ﬂ{ with standard topology (defined by Euclidean metric)

7 CE = QBE(> ‘ 'S d, E:e@,wo is a basis of T

only countably many elements

Definitfion: A fopological space (X,T} is called second—countable if

there is a countable basis of T
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/\ N \
S(.X) {-/\/ S(X) (A \/
/ /—- <

11~ N /
A - -

SNy

+L> —3>
§ -neighbourhood a R 5‘1[“]
€ -3 —definition sequence definition general definition

. (1) [ § (Y, 7)
Definition: (X//J;J, (Y ,/TQ fopological spaces., @
3 =
§ Tul
S: X > Y is called continuous if

leTy = §lu)ek .

-1
homeomorphism = g: X —> Y bijective, continuous and \S}Y%X continuous

E les:
xamples: (a) (Y I/J?) = indiscrete topological space => g? X9 Y continuous

(b)
X,,J;( — discrete topological space => 51 ><9 Y continuous

(c) A
(X,/I;J with equivalence relation ~ (X/N ,T} guotient space

ﬂ: >< —> X/N , K> [X]N canonical projection

is continuous

Definition: (XIIJ;()/ (Y ITY) tfopological spaces.,
5:: X > Y is called sequentially continuous if for all Xxe€ x '.

e E X with X, 23 X X3 /7 E (Y, 7)

.

(S(Xv))hew g_Y convergent with g(xn) 35()()

Fact:

5:: X — Y continuous <:> 5:1 X —> Y sequentially continuous
?\t in metric spaces

second—countable spaces



BECOME A MEMBER The Bright Side of w
ON STEADY Mathematics

Manitfolds — Part ¢

EG\ILT_I - R compact (Bolzano—Weierstrass and Heine—Borel)

(X,T) cover with open sets

do finitely many suffice?

Definifion:  Let (XIT) be a topological space and A - >< .

A is called compact if

Uui =2 /A\ with ULE./_T/ ::> there is a finite Iagrwﬁh: UUL 2 A

eT LeT,

n
GEREO A < R compact <:> A closed and bounded Heine—Bove\>
f

theorem
with standard topology

Proposition: Let (XIT) be a Hausdorff space. Then:

AeX compaot = <X\A p>
pact = A closed Y\ h e
v Assume A is compacT .
X @ Fix be X\A

U\,
For any Q€ A, there are ua,vqe’J“
with aell, , beV,

and U, nV, = gf

Proot:

A - U U\o\ (open cover)

- ¥l (finite subcover)
A 391 % v% o v«..

:> \/ P = ﬂ v"‘.j open neighbourhood of L @

J=1
with An\/C_I.UU\A, N m\/q :¢
=1 Y j=1 "

:::-> L is an interior point of X\A :> A closed
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(x,7)

N —dimensional (topological) manifold:

fopological space (X”J’) with: (1)

(2)

(3)

homeomorphic?

locally!

Hausdorff space

second—countable

locally Euclidean of dimension n

n
m AN [R with standard topology

homeomorphism

h: U=

Definition: (XIT) is called locally Euclidean of dimension n if:

For all xe X there is an open neighbourhood UET and

) , ) h
a homeomorphism L\i W—U with \AC_:(R open.,

The map L\: W — M\ is called a chart of (X;T)

/ overlap \/

‘ \A transition map /l\

\/<

w:{_%)

differentiable?
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(1) Hausdorff space

(M ,T) (2) second—countable
I

[
T u‘\ ohart (U, )

\
I -

(3) locally Euclidean of dimension n

Definition: A collection of charts (ML,L\DKI is called an atlas if: U MLZ M
el

Example: (a) (MI’J‘/) discrete topological space with countably many points

l@ o oo ~~>> () - dimensional manifold
k\é 0,00 °
®

] L/-wiJrh standard ’ropo\oq%q

(b) Mc rR open subset | (M;T)

O % ~=> N - dimensional manifold
¢ [

[2

(c) SL(_: [Rg : S = ixe lkg‘ ||Xg:1

Euclidean norm
. . . v
| - dimensional manifold

by (3) — (1) h'_\(l !

3

-1

' {111

(U(qi, hi't)‘:eit'lﬂk is an aftlas,
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S ixe R

is an N —dimensional manifold with atlas »‘ )
L€{1 ,n+1‘g

Projective space: P (ﬂ{) = S/V with quotient fopology

n=1 equivalence relation: X~>/ :<:> (X=)’ or X=—>/>
uh_fﬂ [u1,+
> ﬂ S —> S/,\, canonical projection
X > [x__\

o= (e PO | xxof, 410 = Ui v,

L> open
for n=1: h:V—V ek, l\[x__\>_ slope
\
with inverse /]\/}X1
[ Jd? it
l‘t works similarly => | -dimensional manifold

for hG\N: L\va_>v:g|,Rn %
([X—_\ ) —f—, homeomorphism

X

L]
Xn+4

Xy

—> | —dimensional manifold



BECOME A MEMBER The Bright Side of e
ON STEADY Mathematics

Manitolds — Part 12

Smooth structures

M,7)

k
C —diffeomorphism

" " overlap

: transition map V\
W l\d\ — D . T] W T A
b[iav] Klikn V] |
3
C —diffeomorphism :  « ) is K —fimes continuously differentiable C,k( )
ke io 1 ' i‘S (partial derivatives up to the k—th order exist and are continuous) we ’

k = 00 ¢ W is bijective
- k
wle C'(+)

3
Definition: » Two charts l‘\,k are called C - smoothly compativle if

k
the transition map is a C ~diffeomorphism.,

k
e An atlas Z;(u“"‘)‘el'% is called a C —atlas if
L/

any fwo charts are C - smoothly compativle.

k
o A maximal C —atlas \A’ is: (1) \]Q( is a Ck—aﬂas

k
(2) For any other C -atlas C,B ,

we have Q{B %é \A,

" k
Definition: N =dimensional C —smooth manifold:

v N —dimensional (topological) manifold

. k k
s maximal C —atlas (C ~smooth s’fvuc’rwe>
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Examples for smooth manifolds:

n h+1
(a) S <R is a smooth manifold.

wWe show that <UL+/ \'\i,i).€£1 13 is Cm—aﬂas:
' L g NE
e
&ixeﬁi 1 tx;>0}

X X
&, L)l
Xn+q X:i.+1

R .
PN
@

‘ ui.,+ n ud',+

/ . \h
N

) e (k)

e X h. X)
X\ o : Jit l 0o . .
x1‘ N X! > ‘11_")(\”2. C —diffeomorphism
1 YA
-1l

~>> extend to a maximal Coo—a’r\as ~> Coo—smoo’rh manifold

(b) n
R is a smooth manifold

L> atlas given by one chart ([Rh co{) r~—> extend o a maximal C™=atlas

/

(standard smooth structure for ﬂ%h)

() consider JCG, C“UP\) A /65: {(X"HX)) | xeﬂ{}
N <RR

N
7

G} is a 1—dimensional manifold with one chart: h: 65, — R
(%, §(x0) > x

~~>> extend to a smooth structure
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U

R
=R

submanifold

Definition: Let M be an N—=dimensional (smooth) manifold.
M, S M is called a k —dimensional submanifold of M if

for all ')e Mo There is a ohav’f(U,h) of M with

L[Mor\u__\ :(ka£> ol E
vk zer0s \vh

7\ ]q[M,,r\M]

ll‘\
W~

(U,h) is called a submanifold chart for M, .

Note: M0 is also a manifold:

n

(U,h) submanifold chart ~—~>> (U\,E) chart | A :=Un M,
1: Do (0)ek
given by F > L(F) = <%)> — (é))é [R

0
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h
Regular value theorem in R = preimage theorem = submersion theorem

5: Rh —> ﬂ{m smooth

N

\

h
Definition: 5-: T ﬂ{m ) Ugm open C'- function,

preimage = smooth submanitold?

(1) xe\l is called a critical point of 5 if

OU:X is not surjective (or Jj(x) has rank less than m)

(2) ce ‘ﬂj\ﬂ is called a regular value of 5 it

5_1[{}1}] does not contain any critical points,

Theorem: " .
5-: U —> R’“ 1 UQIR open C™ - function, (h_éyn>
1f C is a regular value of j: , then

_1 )
‘; [icqﬂ is an (h"’h) —dimensional submanifold of R .
Proof: Use implicite function theorem,

Example:

5: Rh — [P\ / \g:(x""'/xh) = X11+X:+-..+ X?;
J}(Xq,...,xh) :(Zx1 le ZXQ

=> Xx=0 is the only critical point.

Hence: 1 is a reqular value,

% §-1[£‘\}] = ShJ submanifold of Rh-
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5

Smooth maps:

N

M
overlap overlap
Use the smooth f T
structures: k k
. v v %
lRT R" rR [Rn
] u transition map T[ V\ /]\ ‘ transition map [
~ \j

~ ~

differentiable at given point?

Definition: Let M and N be CZsmooth manifolds.

A map 5: M—> N is called k-times differentiable at PeM

it tor charts (U,m, (\r/, k) with |0€U\ and f(ﬁé\n/

the map |<o§a h k-times differentiable at L(F) :

Moreover: 5: M— N is called CZsmooth if :F is  k-times differentiable at FeM

for every pe M and every k€N, we write: SQCM<M,N>.
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F:M—N

CZ smooth

inclusion map:

= \ (: X > X
NOBOREE - B

= continuous!

L\ A
o -1 smooth?
' % k
% l(o : L" ‘\idem’fim map
° v
=

2 z ’ '
@ a5t — PR = S/ (1ny @ x2y or x-)

X —> [X:\ contfinuous map! smooth?

2 3,- X: q X} j k _ 2
@ () (2| - (T
4 o RNk :

=[x -Ix TR
\ - | 1—“X‘“1
7 oo
—/ C = function
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Reqgular Value Theorem:

smoo’(h

oM

}[_iﬂ} submanifold?
Let M,N be smooth manifolds of dimension

m and n (W) = h),
§. M—>N be a smooth map, and o\eN be a reqular value of §

L> }T_iﬁ__\ does not contain critical points

L> F€ M is called a critical point of § if
Vankfr = rank (Jk;“ P)>>

is less than n

is a (m-n)=dim submanifold of M.

DV GLA R)i= {A€ fRM

Then:

F i)

(not maximalr) .

Example:

‘ det( A) + 0} s panteld of dinersien 4

(b )Sqm(a(xA R) := {B € (Rdhi ‘ '8 :B is manifold of dimension

(oh'l)
A
|:| 'L~0k 7
(5
) 04, R) = {Ae 6L(,R) | ATA = 1L1 is a submanifold of GL(4,R)
Proof:

£ 6L(4,R) —> sSym(dxd,R)

, $(A) =

Two things to show: (1) 5:_1[_{1_]3] = 0(4,R)

is a regular value of §

Case d=L: ‘ /\>
C: XD ‘®(
i .

(ko5 ) (e5) (5 20) = k((x> (M))
Xt + X XX+ Xy X xx::(+ x}x
= k( (x1xl+ Xy Xy x3+ X: >> = X Xy Xy

1

1
KXo + Xy
Jacobian matrix:

lx, O 1x, 0
\)kn;fo L-1 (X) = xL X1 X(f X3

0 Zx O Z)(q
rank = 3?2 Not for:

X, =%, =0
XJ=X({=O
X, 2 % =0
X, = )(q:O
i {(A)=1 =

= \)koy-L*(L\(A)) has rank 3 => 4L reqular value

is a submanifold of dimension 0«1 — M?jﬂ = A(O{z—o

=> 0(4,R)
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submanifold: ME [P\ k —dimensional submanifold

h: 0 — I
u 0 I
h[Mf\ —_\ (IR 2,00 & R o

?Rn'U’ﬁMM V\/

local parameterisation

Examg\e: ?‘Rﬂ\ U‘%Mnu
¢ cos(t))
N = \ainte)

~— fangent space

T M= Ay K]
= ?:J?(cf‘(ff) X ‘ XE ka} < R

Tangent space:

/é
>,

Examp\e: /\
surface given by a graph of a function:
1 1

P FR—=R, §eC(R)

o= 3y el
M =G {(sw (’mm}

parameterisation: \F: “{L — M / ( )H QS(le.)y

1 4]
dy(xy) = ( 0 1
2“g'—(x,y) DS)/ (xy)

(KIY) 25— (K’Y)

|
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sub
T; M tangent space for submanifold M C Rh ) reM

(4 &
local parameterisation

TM = zJ%,(crmx e fR"} < R

Idea: ﬁ
%

parameterised curve X: R—M

&J/“{

Proposition: _l,PsubM _ i?f\(o) ‘ 5:(_g,g)—>)r’l differentiable with 5(o)=r§

su » K
PYOO‘F: (g) v€ _]’F b M :> V = J?(@7 X for XE fR / Lf local parame terisation
P
= vz dy(fO) §© it §E) = Frtx, §lea>R

= 2D, =00
y

(D) Take: 5: (-¢€, e) —> M differentiable with 5(0) =p

/"‘; Define: X:= %(hﬁ,\bﬂ‘t:o
Y
y'(0) = 4 (g X}LO — ‘)‘P(Y(m 7O = Jol§0) x €T,"M
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_]’PsubM P —rFM
Mgmh for M

smooth submanifold smooth manifold
tangent vector Q’(angevﬁ vector?
;ﬁ ‘\cuvve uvve
lh lh (¢, e

tangent vector?
k
o -
/‘, < R f J

Definition: (M) = iX (g £) —> M ‘ XollFFerenhab\e with X(D)
pne & (hey)(0) = (hee) (o)

for a chart QM,L\),

equivalent class: [Xl L= ztxl Xmol} represents tangent vector

T; M r= Cf(M)/’\’ (set of all equivalence classes)

fangent space of the manifold M

Result: + For a submanifold Tsub M HT— M

bijection

P0) «— [yl

—rf’ M is a vector space with the operations: @(\lk

vav o= hy () + b)) it b D] (o)
NV = k; (%'h*(v)>
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smooth manifold M of dimension n f€M

Fa ‘
P
\ M
well=defined and with dimension n
chart QA,W) X \A T(’M
L\( 3 defined by:
\P /\/\> L*Q 5\0* L\*Trﬂ’_>ﬁ{h
'E IO
f >\A ar linear + bijective

( g, = l\:

Definition:  coordinate basis (standard basis with respect fo (IA,h) ) :

For QA,M) and pe U, we define: DJ .= kP*(QJ)

where (ehel, ..., e,) is the standard basis of R”

Remember: For submanifolds: —I} M > —l;sub M
Y)*T Jo(7)
Rﬂ
(g1 :%1 P /gn) is essentially ( Q_Lf_(?) ? Q_‘P_(N))

Soon: }; M — N smooth ~—> Okgf —l—r M —> —I}N differential
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disjoint

Definition: Tfangent bundle TM Ha ﬁ _r? M = U irk A TFM

L f)(—?M f’eM
> smooth manifold of dimension 2- OllYYl(M)

Definition: differential of 5 at point p

AS?: TFM —> _G(f)N
[y] — [$ey]

differential: A} rl——> Ag?

bijection

J/ sub
TspN = )N

Example for submanifolds M | N < ﬂ{" smooth submanifolds

T
M N

a5

bijection

] ———>[55] = (51)0)

Example: g: [Rh% R (smooth map)
bijection

a5, (G0 = ()0 = 24y

P

tangent vector

= directional derivative of 5 along [U_" at p
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Differential in local charts?

oh

R

Remember: kag -

Choose: [K] € T‘, M Akg(") (O\S:f([ﬂ)> = Olkg(f) ( I:.)COI__D

ordinary chain rule

Remember: f = ](10 §°|n
A§ =

[
S
T_L
L

9472
Q.
5—
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Recall: FG:MI QA,L\{) coordinate basis (91,---,90 of T}M
- i QJ P — LP*(e,J-) = a\Lh(r)(ed-)

R
IO
Directional derivative: 5: M —> R smooth EV‘:; EFeo*nve
2.5)() = ds, (9 =
(JS [/ — g?( J> m
smooth
. R
M"(A%(r)(eﬁ) R‘F D/L’ ]?\P foy 7
= LEeypeg M| 7=k e
= (50((03)\(0)
chain vi\e ) D(§° )
- J;ov(h(r)) 1/@;’ — Tx:L(h(r))
P
Example: ! 1 1
: m >
2>t O
LS /\
) ()
5 /Em \
T & R POl
9= ”\Lh( e = LoF) L T =he)+ ?9: = O\“rk(;@»(%)
~) i(s+t) (s Y(£) = k(®)+
:((P°J) (0) = %‘ C’,( = (€ :(f\ro’f)\(()) y©) Lk’(g) :
= ¢ CZ g I 1
wap §: S & 'i(ch)t'L 1s (£
Jg(s) = 2
last v ol _ _
differential of S: M: (9 ) Ak \)5_ ) (g) =1 Aqu_(%} = A
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Introduction to Ricci calculus / tensor calculus
N" C——> calculating in coordinates
L(,K - C_,> positions of indices matter
I_)X1 (superscripts, subscripts)

our language Ricci calculus
components of a given chart In:’ : U — R coordinates
Uh) , h: u—=R or simply: X', X, .., X"
coordinate basis of T‘,Mi ’)4 / ) . 2
’96 = (?*(e,d-) X ox* ox”
tangent vector €T, N: :
[X—J P \/19_4 + -+ vngh o VJD_
Vy 3yt V0, o+ V9, L X 2X NI
( (Einstein summation convention)
contravariant vector
inner product on T M :
Later: < > (R f f "
V,W) € Viq. W Tensor
‘?ﬁ//

dual fo a contravariant vector: V‘j é&b

one—torm (~>linear map)

dx.(0) =y ' o=k | .
XJ( I\) {0 4k AXJ(%) _ g\)k
S

Kronecker delta
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Recall: M TPM n—dimensional vector space

@ Define: T'P*M :':—(TPMYK

= io(: TFM — R \ineavk
~> dxjp oM — R
O\XM,('QK) = ng linear map:

%
differential form: map W defined on M  such that w(F)CTF M

(one—form)

O\XJ: p—> Axo-,r GT‘,*M

Some multilinear algebra: AH"‘(V) 1= io(: \/x x\/ s [P\ multilinear (k —linear)
—
K —times + alternating
Qu(w,.--,vk):o

(Vs Vi)
linearly dependent

example: e AT (V) , x(v,v,) = - (v, V)

det € /"\\‘f1 (Ri)

X € AHK(\O is called an alternating k —form on V

Remember: AH1(\/) = \/,I< (dual space of V)

Alt° (V) = R
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Wedge product: A multiplication defined for K€ A\‘\'k(v> ) EG AHS(V)

A AR (V) x Al (V) —> AlRY(V)
(o<, [&) —> /\[&

k+s)-linear
L> (O< A p)(v"""vkﬂ) ﬁ O((V,,...,Vk)- {S(Vkﬂl'"lvkﬂ)

not a possible definition:
(not alternating)

Definition:  For « € A\‘\’k(\/>, [36 AHS(V> , we define /\[& € A\‘\’k”(\/) by:

(°< AN B)(V1 ) "'Ikas) v — 1 ZSQV\(U‘) O((Vb‘(ﬂ 2. IVV(k)> ﬁ(vb‘(kﬂ), ,Vb‘(kﬂ‘))

k! s!
o‘e‘s-.k*s

Exameles:  (a) ¢, Be AlY' (V) = V'

(AR (¥) = (W) BV) = () Bw)
o e ) ) - HE) - - eufl

identified with E

b [) = oo - B GEDED

identified with « /\Iz

k-s
Properties: (a) ok A B = (— 1) F/\ X (anticommutative)

(b) (ouo(‘)/\[& = oL/\[; +ok‘/\[§

()\ot)/\[é = 7\(0(/\[4)

(bilinear)

(c) " A(F' A b,) — (0( A E) nY (associative)

(d) For a linear map S:W—=>V and <€ AHK(V> define:
pullback (}*o()(w“_..,wk):: o((&(wq), . 5»(\Jk)>

(*natural")

§(xnp) = Fanfy
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M smooth manitold of dimension n —=> _rfM N —dimensional

vector space

Definition: W : M S U AH—"(TFM>
feM

P> W, = wpe AR (T M)

is called a k-Fovm on M ,

We also define: W) A V] as (w A V])(f): w(f) A V)(f)

Fo s (F0)() = @F) w(ie)
\ 5: N —>M smooth

Basis elements: /—r‘, M

basis of _]‘F M : (9, , 9,_ [ ,9h> with Qj V= ‘F*(%) = Ohf P(CJ>

basis OF(TF M) = AE(TH) © (Aed, A, dx)

defined by: o\x‘; (’30 — ng = §1 / \):k
0 , j#k

k
Proposition: A basis of Al (T}M) is given by:

Pk
(J\xf‘ A AXET A A A )

Pa< o<
Examp\e: OI'YYI(M) — 3 ’ AH_')-(T—FM> :
( o\x:, A J\xlf , o\x:, A Axi , dx;} A Axi)

Conclusion:  Each l(—‘Fovm on M can locally be written as:

W(p) = > | wrupu---,;«&l’)'dxr A AXEE A A dxp
<

—S R component functions

wr‘nr\t;"',r‘k :

Definifion: « 1f all component functions are differentiable at P

Then (0 is differentiable at §.

« If 0 is differentiable at all Pe M,

— we Q'(M)
(M) = C(M)

then L) is called a differential form on M.
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k k—Fo m on M
differential form on a manifold: € Q(M> = Y

+
differentiable

W(p) = > wrurw--,rk(l’”\xr A AXEE A A A
,41<'°-<I‘k

Examples: a VRN J,
mples ()M=R1 TMz ‘ kae

AX;(QK) = Sdk

dentite 9=(5) . dxl = (1, 0)
(), - ()

(Ax; 4 A"?Ex Ao ) = ng”(“ A% () 4% (are)

o \ 0es,
(04.1) (64.1\
v a G4a
i A 2 : sgn(T) ey Rar@ = de)f< . 4'>

a
1A O
re s,

I

b n
42 Each € ﬂ (Rh) can be writfen as:

o) = By (D el A b nn b

I
=
;'5
V)
=
~/
o
®
—
—

(c) "
M = [\{L @p
( j L'O given by polar coordinates (.F(r, e) — <F-cos(0)>
™ sin(0)
(r,8) /]\
= DJ = (P*(ej) = JY(F)(QJ)
0= 2L(r,0) = (°"S(0’>
ar sin(8)
g - -sin(0)
Q(F/G): _lL(r, 6) =
t 26 rcos(9)
. |
oowesponolmq 1—forms: a\r = cos(§) , sin(e)> = X, )
f = (x, 1 . 1
or F (X Y) O\GP = F (— sin(8) , COS(G)) = x"'.|.y7— (—)/ ,X)
2—form:

(0\1", A 0\69>(64,6L> = a\r‘,(g) AGP(eJ - o\rf,(eb) 0\6‘,(6)



BECOME A MEMBER The Bright Side of ¢
ON STEADY Mathematics

Manitolds — Part 3

vector space &~—— orientation
e

EA
n
for example: (R with basis: B = (6‘-1 )€1 "'/eh) ‘ S

e
k— positively orientated !

change—of —basis matrix —7 C<B

J N\

C :(CHC?,/---/C"-)

two cases:
ole‘\'(_|;<_3 ) > 0 :/Q posifively orientated
ole‘f(—|;<_3 ) < 0 negatively orientated

> two equivalence classes for bases

(G ] (4ot ]
W) W)

det(T . )>0 det(T._,)> 0

Remember: \/ finite—dimensional vector space + one chosen equivalence class

/~———>  orientation (\/{ oy>

v ‘ Tf’M tangent space

Orientations for manifolds: a ”
E‘

h with orientation | ith ovientatio
(e
L Px R —> TP i

T Slandiil

should not change orientation

Definition: A smooth manifold M is called orientable if there is a tfamily of orientations

for the tangent spaces i(TPM ’ OYF.)’% such that

VoeM 3 Vxew: (30,90, ,8%0)e o

Example:  (a) If M has an atlas with one chart (M,m , Then M is orientable,

(b) Mdbius strip: ~—>

atter vunning
around the strip:
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@E @ orientable manifold M

Fact: Let M be an n—dim smooth manifold., Then the following claims are equivalent:

(a) M is orientable :  We have i(—l_FM | Oyf;)% such that
VFC—; M E(U\,H Vxe W (910‘)0() | Qih)(x), ,?S')(x)> € or,

(b) There is an a’f\as&M/ collection of charts that cover the manifold

such that all transition maps @
w: ¥ — ) satisty: -:'
det( J () > 0 Sh e\

/]\ ! U\ transition map /]\!
~ \j
> X |

2

(c) There is a differential form (volume torm)

W e QH(M) with w(r) # 0 for all pe M.
Proof: (a) & (b)
@ [ /
/ overlap X A~ dh, /

W Sarshion e V) Ju & h
T ] ; T > ) \&)] R

We have: f\ﬁ({%) = (PX(Q1)

h
first co\umm?\of Jacobian :> Z?\J /\'/*(ed.) — W*(QAI)

Change—of—basis matrix: :B = (91“)(@, cor ) gsh)(,ob ~—> C= ((91“)(?), bee) QSO(Fb

—|:3<—3
(*) -
= =17 Ju P
M

Hence:

ole’f(—|;<_3) >0 (= det(J, () >0

(a) (= (b)
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manifold M

.distance between p and 9 ?

'CTM

with inner product °\6V1QJW\S and aWQ\SS?

In Rn: inner product <, > ﬂ{h X ﬂ{h —s R

N

\ [,l(X,X> length of x
X

~
>

write: 3()(,)/) = <X,>/>

Definition: M smooth manifold. If we have an inner product 9p " T",M

for all FeM and P> gp smooth, then:

3: P> gp is called a Riemannian metric and

(M,j) is called a Riemannian manifold.

what does smooth mean? M

>/
’
\'\l )\( ~—> coordinate basis in T;(M ; xell

(P, 900, ., 900
9 W0, 9°0) = B

maps: U —> R M!

for all ©,j, (U,h)
h) IJ ) )
X —> i)

(Einstein summation convention)

In local coordinates: jx( ,0) \L: j(:'J(X) J\X;() 0\)(‘;)((@)

Hence: 3x can be seen as a symmetric matrix: G = < jw(X)>
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Riemannian metric: j: FI% 3r</mner product on Tf:M

K smooth

Submanifolds in [RNi

N

< R
h —dimensional submanifold /\&
\/ standard inner product oy
B

standard Riemannian metric P

SU /ﬁ\
Note : —r‘,M = _[_P bM = Span( %: :%5 Y)/Jh\/

7

SRR EAGEE G,

standard

N
Examples:  (a) 1 —dimensional submanifold in R

\/W

\ € > y(¢)

1
standard

0 = P®PEy =l

standard

L b
length: J’“ W\(t)”s’randavd At = f det(G) dt
a 4

1 3
(b) "< [R has parameterization given by spherical coordinates:

sin(B) oos(\r)

@(6,&{)) = | sin(8) sin(y)

cos(8)
p cos(8) cos(Y)
:> two tangent vectors: % = | cos(8) sin(\pkr)
-sin(B)
% -sin(B) sin(y)
— = | sin(B) COS("f)
f 0
1 0

:> G — ~> lole’f(G) = |SiV‘(9)|

0 sint()
volume form: lole’((G) db A AKF



BECOME A MEMBER The Bright Side of ¢
ON STEADY Mathematics

Manitolds — Part 3s

We already know: An orientable n —dimensional manifold M

n
has a non—=Ttrivial volume form e Q(M)

Definition: M  orientable Riemannian manifold of dimension h.

n
Then the canonical volume form Wy € [0} (M) is defined by:

1f (“ L',,_’VQ is a positively orientated basis of TPM

and an orthonormal basis ofTFM (ONB), 3P(v“vd) - SLJ

\_/
Then: M(f)( N,V :Vn) =

Proposition: (M:j) orientfable Riemannian manifold of dimension h .

M Let (U\,L) be a chart such that the basis

(W K, .. ,’ag“(x))

\n\ﬂ )Y is positively orientated for all xe (A,
" dual basis
R {

Ly(x) = Ole’f(G) dx! A dxEA A ax.

K Kwheve GU 9x (g(‘O() ’3(")())

determinant of Gram/ Gramian

Proof: ® (") o Gram—Schmidt
(’31 )9, A > (v1 v, ...,v,,) ONB

|

\

positively ovnen’fa’reol 5: positively orientated
linear map

Then: M(x) (’30‘) ’3(") , )9&&)(x)>
= 0y (J00, 80, 30) = §,00 (., w)

= det($) w,(x) (v“___,v,)

N— Y o/
=

9x (3760, 37°0) = 9. (5, §)

N1y = 9:(8'A8(W), 3'AT()
& =CARM), AR 2 =(AA).
te| 7 AN (] s < &
=> def(G) = det(A)"
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M orientable Riemannian manifold of dimension h . Q
R

L-> canonical volume form wM(X):\]OIeT(G)‘ a\xl,\_,,\o\x:

E les: (2 3
xamples:  (a) S R has parameterization given by spherical coordinates:

sin(B) cos(y)
O(6.9) = [ since) sinty)

cos(8)
1 0
:> o =
0 sint(8)

= Wy(x) = sin(d) 46 /\ALF

(b) 1 0
Graph surface: §: R =R C*=function ; >
N
=3 (x, §{x)) | xeﬂ{’i NO\,CR@

3
2—dim. submanifold in [R

X,
identify 0
Wy X 9Py
of 9
) _ @.P_ gie— . Rl (.=/=J
gl = (e 3E0 = {2
of 9f
1+ QXL QXJ

: ) (W) 1 0
Interesting fact: ’3“‘ ) x 9% (p) = H 0 1
a | 3% % 9P Lam o) * o,
_9f
_ % | l
= (% ]| = {detC)
«
standard

=R

standard
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N 3
M_C;(R orientable Riemannian manifold of dimension Z
length of N <~ canonical volume form
Definition: et ,M/ be a Riemannian manifold and MQM_ 6 ~M

A map N : M—>Tﬁ

pr—= N(p)eT, M

and N([’)EQTPM)L\S,O% see Tf,M QTPIM/>

is called a normal vector field, (orthogonal w.r.t. go)

We call it confinuous at p it for a chart (:lA,\n) of rl\\/l,
holds: (peU\)

N(x) = th(x)-g?‘)(x)

\

continuous functions L —= R

We call it a continuous unit normal vector field if

Important fact:

Example: il

S <=

N(X) = X

* N is continuous at every pe M

) ||N(X)|| = \l SX(N(X)/N(XDI =1 for all xe M

Mc '?\h (h~1)—olimensiona\ submanifold:

(a) -
M is orientable <:> M has a continuous unit normal vector field

\ continuous normal vector

field not possible
(b) 1f N is a continuous unit normal vector field, then:

wy = N _Idet

canonical — -7 M

volume form l\

means:

wM (X) (\I“"'/Vh—1> = de‘t( N (X) ) V1,...,Vn_1>

g

volume = height - area
“—N\——

=1

N

R,

parameterization:

sin(B) oos(tr)

O(6.¢) = [ sinee) sincy)

cos(8)

\]ole’(( C) = Ly (x) (g}h)(X), 3&”(x)) = det (N(x) , g}“’(x), ’3?’(@)

sin(B) cos(y)  cos(8) cos(y) -sin(B) sin(y)
= det| sin(@) sin(y) cos(8) sin(y) sin(p) cos(Y)

cos(8) -sin(H) 0

= sin(H)
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Integration: 5:-, R— R (smooth tunction later)
A\ A\
illiual -
| 4 & b
: . ™~ Jg((X) dx landl .
Riemann infegral at] Lebesque integral

See {(x) as a density at point xe R :

- ———

S 1) ax

density - length = mass

ZJC(X)'AX ~> y)C(x) dx = total mass

R
Same idea in higher dimensions: 5 R"' > R
/”’/\\
density - area = mass

n~—> y}(x,y) A(x,)l) = total mass
"

“—’

1
Let's fake M =R : differential form (J: p = 5:([’) AX A 0‘)/ c AH'L(Tp”)
=R

— v _v—
" W, Vi

~> Wy (viw) = o) ((dx(v)-dy () - M)&@

= }(F) deT(V: W)

infegral: Sw e jf 0\)( ,\Ay — j\}(x,y) A(X,)/)
M M R
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Integration on Rh3 LC(x,y) O\(X/)’) — jf Ax A A)/
R

1
RS

—_YJC dy A dx
R /

Integration on orientable manifolds: QA,[\) chart with:
v (990,996, ... ,2°(9)
u N> O is positively orientated for all xe W\,
. -2, .0

%’< )’ lp,.(

) n ~> " "
5 | =R TR =R
W
AX. e, szggn(F>
Consider small box: /’((;\x
Ax, <, ax, ’3&"‘(?)
volume: DX, DX - AX, measured by W,
wp (A% 8 , axNp), ., ax )
()
= w (W), %) A, AX,
N
N
Wyt n <f>
summing up small boxes
> Jwtl,...,h(kf(?’)) dx1 AX'L'” Axm
limit process AM’.

4!
Definition:  Let M be an orientable n —dimensional manifold, We Q(M) )

(\A,LD chart with: (g?')(X) ,92")(x), ,9&%0) is positively orientated for all xe W,

For AC W, where L\\:A__I is measurable, we define:

Ju = { Wy, (K1) dx

; AR
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n
Let M be an orientable h—dimensional manifold and we () (M) )

w(p) = Wy, (p) a\x /\o\x A /\J\x; , U\
\/\(_/ orientation

component function < )l\ Q/ s
5(,_) 5&)11”. (h ()) dx (infegral in R")
h[W ~ , n
W [u] * 0 5 =R
= 5 Lf W
H'M_‘l N volume form on manifold fP\n

Some explanations: (1) For weﬂh(b\) ) \f: U —> U, we define Lr*w c ﬁ(a)

by: (Lf*oo)F (v“ ) = W ( o\tf (v,), .;A«w(vﬂ)
(f’ ?(f)> \\(f* (former votation)

2) (Lr*w)i; — ;E:(?) - det (i) (volume form on R )
f("o“) = (LP*M>F(Q1,...,€,,) = wP(\?*(eQ . \f*(e )) ”_,“(p)
\
\3“’ ’3‘“’(
(3) part 3¢
5}()() dx = fo*bo
W h[W]
| \\
part 34
S, (KO = fo
hu] U
Question: gw : = §(f*w well=defined?
A h[A]
A A
k
?Q jk w(
- 1
w . *
e, Syto = [yt
X S~ : h[A] KAl
PVOO'Fi We have: ’\1) oW = Ll’ (restricted 1o a suitable subset)
> o =
> :r(: " w
W~ ’(B)’ - j(Y) - det (. )

:> (W*CJ’)X(V“...,V,,) = a]’w(x)(dwx(v«) ) s AWX(VD) can be described

by the Tacobian
= Ty (Il ¥ ) %)

part 35

= det(J () ) &V, V)
«———

>0 (everything should be orientation preserving)

Hence: . . «
Syt = Swtyo = §det(()) g(w) dn
h{A] h[A] hIA]

h
ordinary infegral in R

= Sy A
k[A] k[A]

change of variables formula —=
yawto = {3
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We already know: A
@ o\
orientation
< l\ / preserving

2

Ugm“

“hlA

A
(measures areas on S )

1
Example: W canonical volume form on .S

@: (0,?))&(0,21?3 —> fR3

N// sin(p) cos(‘f)
0 (8,¢) —> [ sin(o) siny)
cos(8)
X
S‘*J = 5@ (W
oW 1]

canonical volume form: &)(P) = JOIG‘N G(ﬂ)‘ O\X}, A AXF

C~v—" V'
sin(p) 40 o\\f)

for FZ @(e,kr) \4—{:02”15 on S:l

(@*@ (3) = sin(g) - det(-, )
\\(

0 "
| AG/\ALf
T

1—forms on U:g RL

in short: ) = sin(B) JG/\ALf

@*w = sin(Q) AG/\ALf

S(AJ = S(AJ = ja_é*w = j sin(p) AGI\A‘{
E[’G\ (0,1‘\") X(O;UT) (0,'17) x(o'uﬂ

LI

null set _ 5(5 sin(B) Ako 0 = t&

0 0

n
Definition: Let M be an orientable nh—dimensional manifold and we () (M) .

Aset AS M s called M
A

¢ measurable if h[AnU—_\ is measurable '\C\/
Q(w.v.’f. Lebesque "I u

for every chart (M,L\). measure in IRv.) h£ )Y
e null set (set with measure zero) E cR"

it h[An W] has Lebesgue measure 0

tfor every chart (M,L\).

We get:

S(AJ is defined for every measurable set A S W (where (Wh)is a chart)

(assuming §Lr*w exists in R )
h{A)

A
and S(AJ .= S(,Q if B\N € W\ (where (M,ln) is a chart)
B

B\ and X is a null set,

I
-~
=

Hence: Sw
Sl
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A measurable M

W volume form

L7 Put fogether to get:  |u

A
Every manifold M has a countable atlas (U\k,hk)

e which means
UUk - M.
keN

Fact:

Lemma: Let M be an orientable n -dimensional manifold and (Mk,hk)kem atlas.

Any measurable sef AC_E M can be decomposed into sets Akt

(1) Ak is measurable for all ke |\

2 | JA = A

ke “

(3) A-Lﬂ AJ = ¢ for L#) aﬁ}
W,

@ A <U, for all ke N

Proof: Just define:

A1 := An U,
AI::(A“ U‘D\Aﬂ 0,
Azzz(A“ us)\(AW AJ

]
Definition:

n
Let M be an orientable h-dimensional manifold and w) ¢ _O_ (M) ]
Choose A , Ak J<Mk,hk) as in the Lemma before.

A
£ A Sm exists for all ke N |
W

k orientation
¥ (.( l\k‘/ preserving
h (A
which means: =R
- . -
jl wtl,.._,n( hl:(x)) | A?& < o0 hI\D\k__l
h A
component function: wm'_“'h(p) = MP(D1 "Bl l _._’(Dh)
Qe
-1 h
-Sl wu,.._,n(l‘k("))l dx < 03 |
k=1 LK[AK’)
then:

A k=1 A

and if it works for A = M, then () is called integrable.
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Am aaaaaa ble
M orientable

h-dimensional manifold

qmm we O (M)

Proposition: (wa\\-de{-‘inedness of jw)
A

(Mk ’h")kem atlas, A = l\Le)NAK disjoint Ak < Mk with:

(1) S exists for all ke N
o qmﬂt‘

(2) 29

Yo Slog (D &% < o
k=1 LK[AI«_)
(ﬁh,'E,QMN atlas A= UK»« dis joint KM_C_QM .
\ meEN (measurable) WI/}A
Then:
) Sbo exists for all m€ N
A
D% Sloy ] dx < o
=t A2
d = = )
- Z jw1,1,.._n(h(x)) dn = jwu ,,,,, n“‘:(x)) dx = ﬁ*’
m=1 | [R]) ' k=1 ), (A A

e qmﬂ" WI/IA o W

5 | Yia,.., (l‘:(X)) d % — j | Wyq (h.(0) | d'x
h A A Lh[Akn A
= i j | Yit,.. n“‘:(x)) dx = Z - j | it n(r:(x)) d'x
=1 LKLAK“Kh] - m =1 \r\h[AKn’A',:_\
V4

,,,,,

U h[AnA,]

meN

> Y oy Gl deo= 555, I e, R[4
=LA k=1 m=1 b [AnA,]
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Change of variables:
smooth
+

- S
§ 1 smooth > diffeomorphism

1f 51: M —> N is a diffeomorphism

and orientation preserving, then: *
5: W p— ()

M A §MI
N

AR
KV“V,_ ,...,V,,) Positively orientated in TfM
— (,05()(0\5 (W), M v))
=> (A0, 45,0 ..., d5,(w)

Positively orientated in —rg(‘;) N

Proo: .v ’ /,5\1 y
CET @
(U /b O{, j\fk_ W=y

=R’
hl\[AIJ

decomposition of M into

(Vk Iﬁk) with /Qk = hk° §_1

B.:= §S[A

/Qc uhtably many (pairwise) disjoint sets

countably many (pairwise) disjoint sets Ak.C_ We

SS*U = * *u with = {0
Ax hk§[AﬂY) g ¥ f

We have: <Y*‘§*w)x( Uy Uy yenny U\h) = (g*wzf(x)( d\fx(u“),,__,d\fx(uh))
ot (g 400, dfygy ()
wr\r(x) ( O\YX(UD 10 O\I\YX(U"))

= () () = (o) =gt

Result:

Ak ’ LL%AIJY 5 ’ "l\‘gr_‘Ak]f\t/ ’ ,Qkf['B,jY § f;{w

- /’\ 8 [BI:_‘ = (hk° §-1) I:Bk__l = hk[Ak]
K___/
(U b O& 9= / ;—> *

? (Vi 4 5 T = 5 .

kit k) with ﬂk — hk S—’ oh both

SIS B..= STA ! o

L]
“h(Ad




