

$$(3) (A_i)_{i \in I} \text{ with } A_i \in \mathcal{T} \implies \bigcup_{i \in I} A_i \in \mathcal{T}$$

then \mathcal{T} is called a topology on X .
The elements of \mathcal{T} are called open sets.
$$\underbrace{\mathsf{Examples:}}_{(a)} \mathcal{T} = \{ \emptyset, X \} \text{ is a topology on } X \quad (\text{indiscrete topology})$$

$$(b) \mathcal{T} = \mathcal{P}(X) \text{ is a topology on } X \quad (\text{discrete topology})$$