-
Title: Differential (Definition)
-
Series: Manifolds
-
YouTube-Title: Manifolds 23 | Differential (Definition)
-
Bright video: https://youtu.be/stExgO4Mifg
-
Dark video: https://youtu.be/Etf5akGd2oU
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mf23_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $M,N$ be smooth manifolds and $f: M \rightarrow N$ be a smooth map. How is the differential $df_p$ defined?
A1: For $[\gamma] \in T_p(M)$ we set $df_p([\gamma]) = [ f \circ \gamma ]$.
A2: For $[\gamma] \in T_{f(p)}(M)$ we set $df_p([\gamma]) = [ \gamma \circ f ]$.
A3: For $[\gamma] \in T_p(M)$ we set $df_p([\gamma]) = \gamma(0)$.
A4: For $[\gamma] \in T_{f(p)}(N)$ we set $df_p([\gamma]) = f (\gamma) $.
Q2: Let $M,N$ be smooth submanifolds of $\mathbb{R}^n$ and $f: M \rightarrow N$ be a smooth map. How can the differential $df_p$ be written?
A1: For $[\gamma] \in T_p(M)$ we have $df_p([\gamma]) = (f \circ \gamma)^{\prime}(0) $.
A2: For $[\gamma] \in T_{f(p)}(M)$ we set $df_p([\gamma]) = \gamma \circ f$.
A3: For $[\gamma] \in T_p(M)$ we set $df_p([\gamma]) = \gamma(0)$.
A4: For $[\gamma] \in T_{f(p)}(N)$ we set $df_p([\gamma]) = f (\gamma) $.
-
Last update: 2024-10