-
Title: Tangent Space (Definition via tangent curves)
-
Series: Manifolds
-
YouTube-Title: Manifolds 21 | Tangent Space (Definition via tangent curves)
-
Bright video: https://youtu.be/l0OSjvRs_cc
-
Dark video: https://youtu.be/pHf1KK6otgk
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mf21_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $M$ be a smooth manifold of dimension $n$. What is the definition of $C_p(M)$ according to the video?
A1: $ { \gamma: (-\varepsilon, \varepsilon) \rightarrow M \mid \gamma \text{ differentiable with } \gamma(0) = p } $
A2: $ { \gamma: (-\varepsilon, \varepsilon) \rightarrow M \mid \gamma \text{ differentiable with } \gamma^\prime(0) = p } $
A3: $ { \gamma: (-\varepsilon, \varepsilon) \rightarrow M \mid \gamma \text{ continuous with } \gamma^\prime(0) = p } $
A4: $ { \gamma: (-\varepsilon, \varepsilon) \rightarrow M \mid \gamma \text{ continuous with } \gamma(0) = p } $
-
Last update: 2024-10