-
Title: Second-Countable Space
-
Series: Manifolds
-
YouTube-Title: Manifolds 6 | Second-Countable Space
-
Bright video: https://youtu.be/ulFi1zsn-yM
-
Dark video: https://youtu.be/oyNSWc-ZPrU
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: mf06_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $(X,\mathcal{T})$ be a topological space. What is correct for a base $\mathcal{B}$ of a topology $\mathcal{T}$?
A1: $\mathcal{B} \in \mathcal{T}$
A2: $\mathcal{B} \in X$
A3: $\mathcal{B} \subseteq X$
A4: $\mathcal{B} \subseteq \mathcal{T}$
Q2: Let $(X,\mathcal{T})$ be a topological space. What is always correct for every base $\mathcal{B}$ of a topology $\mathcal{T}$?
A1: Every open set can be written as an intersection of the sets from $\mathcal{B}$.
A2: Every open set can be written as a union of the sets from $\mathcal{B}$.
A3: Every open set can be written as a finite union of the sets from $\mathcal{B}$.
Q3: Does every topological space have a basis?
A1: Yes!
A2: No!
A3: Only if it is the discrete topological space.
-
Last update: 2024-10