

Proof:

Linear Algebra - Part 63

<u>Assume</u>: x eigenvector for $A \in \mathbb{C}^{h \times n}$ associated to eigenvalue $\lambda \in \mathbb{C}$ $A \times = \lambda \times \implies A(A \times) = A(\lambda \times) = \lambda(A \times)$ Then: Arx $\implies A^2 \times = \lambda^2 \times \implies A^3 \times = \lambda^3 \times$ induction $\implies A^m x = \lambda^m x$ for all $m \in \mathbb{N}$ $A \in \mathbb{C}^{h \times n}, \quad p: \mathbb{C} \longrightarrow \mathbb{C}, \quad p(z) = C_m z^m + \dots + C_1 z^1 + C_n$ Spectral mapping theorem: Define: $\rho(A) = C_m A^m + C_{m-1} A^{m-1} + \cdots + C_1 A + C_0 I_n \in \mathbb{C}^{n \times n}$ <u>Then</u>: spec($\rho(A)$) = $\left\{ \rho(\lambda) \mid \lambda \in \text{spec}(A) \right\}$ Show two inclusion: (\supseteq) (see above) \checkmark (\subseteq) 1st case: p constant, $p(z) = C_0$. Take $\tilde{\lambda} \in \operatorname{spec}(\rho(A)) \Longrightarrow \operatorname{det}(\rho(A) - \tilde{\lambda} \mathbb{1}) = 0$ $(C_o - \tilde{\lambda})^h$

 $\implies \widetilde{\lambda} \in \left\{ \rho(\lambda) \mid \lambda \in \operatorname{spec}(A) \right\} \checkmark$

not constant. Do proof by contraposition.

Assume: $\mu \notin \{ \rho(\lambda) \mid \lambda \in \text{spec}(A) \}$

Define polynomial:
$$q(z) = p(z) - \mu$$

$$= C \cdot (z - a_1)(z - a_2) \cdots (z - a_m)$$

$$\underset{\times 0}{\times_0}$$
By definition of μ : $a_j \notin \text{spec}(A)$ for all j
 $\implies \text{det}(A - a_j \mathbf{1}) \neq 0$ for all j

Hence:
$$det(\rho(A) - \mu 1) = det(q(A))$$

$$= det(C \cdot (A - a_1)(A - a_2) \cdots (A - a_m))$$

$$= C^n \cdot det(A - a_1) det(A - a_2) \cdots det(A - a_m)$$

$$\neq 0$$

$$\implies \mu \notin spec(\rho(A))$$

Example:

 $A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}, \quad \text{spec}(A) = \{1, 4\}$ $B = 3A^{3} - 7A^{2} + A - 24 \quad \text{, spec}(B) = \{-5, 82\}$