

Linear Algebra - Part 58

 $spec(A) \subseteq (fundamental theorem of algebra)$

 \searrow consider $x \in \mathbb{C}^n$ and $A \in \mathbb{C}^{h \times n}$

<u>Definition:</u> \mathbb{C}^n : column vectors with n entries from \mathbb{C} $\left(\binom{i+2}{1}\in\mathbb{C}^2\right)$

 $\mathbb{C}^{m\times n}$: matrices with $m\times n$ entries from $\mathbb{C}\left(\begin{pmatrix} i & i-1 \\ 0 & 2 \end{pmatrix} \in \mathbb{C}^{2\times 2}\right)$

Operations like before: $\begin{pmatrix} x_1 \\ x_1 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_1 \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix} \cdot \text{in } \mathbb{C}$ $\lambda \cdot \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} := \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix}$

Properties: The set $\binom{h}{}$ together with +, \cdot is a complex vector space:

- (a) $(C^n, +)$ is an abelian group:
 - (1) U + (V + W) = (U + V) + W (associativity of +)
 - (2) V + O = V with $O = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ (neutral element)
 - (3) V + (-V) = 0 with $-V = \begin{pmatrix} -V_1 \\ \vdots \\ -V_n \end{pmatrix}$ (inverse elements)
 - (4) V+W=W+V (commutativity of +)
 - (b) scalar multiplication is compatible: $\cdot: \mathbb{C} \times \mathbb{C}^n \longrightarrow \mathbb{C}^n$
 - (5) $\lambda \cdot (\mu \cdot \vee) = (\lambda \cdot \mu) \cdot \vee$
 - (6) $1 \cdot v = v$
 - (c) distributive laws:
 - $(7) \quad \lambda \cdot (\vee + \vee) = \lambda \cdot \vee + \lambda \cdot \vee$
 - (8) $(\lambda + \mu) \cdot \Lambda = \gamma \cdot \Lambda + \mu \cdot \Lambda$

>>> same notions: subspace, span, linear independence, basis, dimension,...

Remember:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, ..., $e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$ basis of \mathbb{C}^n

$$\Rightarrow \dim(\mathbb{C}^n) = n \qquad \left(\dim(\mathbb{C}^1) = 1\right) \xrightarrow{C}$$

$$complex dimension$$

Standard inner product: $u, v \in \mathbb{C}^h$: $\langle u, v \rangle = \overline{u_1 \cdot v_1} + \overline{u_2 \cdot v_2} + \cdots + \overline{u_n \cdot v_n}$

standard norm
$$\longrightarrow \|u\| = \sqrt{\langle u, u \rangle} = \sqrt{|u_1|^2 + \cdots + |u_n|^2}$$

Example:
$$\left\| \begin{pmatrix} i \\ -1 \end{pmatrix} \right\| = \sqrt{\left| i \right|^2 + \left| -1 \right|^2} = \sqrt{2}$$