

Linear Algebra - Part 53

Consider:
$$A \in \mathbb{R}^{n \times n}$$
 \iff $f_A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ linear map

Question: Are there vectors which are only scaled by f_A ?

Answer:

$$Ax = \lambda \cdot x$$
 for a number $\lambda \in \mathbb{R}$

$$(A - \lambda 1) \times = 0$$
 for a number $\lambda \in \mathbb{R}$

$$\iff X \in \text{Ker}(A - \lambda 1) \quad \text{for a number } \lambda \in \mathbb{R}$$
 eigenvector (if $x \neq 0$)

Example:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} , A \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \lambda \cdot \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \iff \begin{array}{c} X_1 + X_2 = \lambda \cdot X_1 & \mathbb{I} \\ X_2 = \lambda \cdot X_2 & \mathbb{I} \end{array}$$

For
$$T$$
: $\lambda = 1$ or $X_1 = 0$ $\Rightarrow X_1 = \lambda \cdot X_1 \Rightarrow \lambda = 1$ or $X_1 = 0$

For
$$I: X_1 + X_2 = X_1 \implies X_2 = 0$$

Solution: eigenvalue: $\lambda = 1$

eigenvectors:
$$X = \begin{pmatrix} X_1 \\ 0 \end{pmatrix}$$
 for $X_1 \in \mathbb{R} \setminus \{0\}$

<u>Definition:</u> $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$.

If there is $x \in \mathbb{R}^h \setminus \{0\}$ with $Ax = \lambda x$, then:

- λ is called an eigenvalue of A
- χ is called an eigenvector of A (associated to λ)
- $Ker(A \lambda 1)$ eigenspace of A (associated to λ)

The set of all eigenvalues of A: spec(A) spectrum of A