

Linear Algebra - Part 52

We know for
$$A \in \mathbb{R}^{2 \times 2}$$
: $\det(A) \neq 0 \iff A_X = b$ has a unique solution $\iff A$ invertible = non-singular

For
$$A \in \mathbb{R}^{n \times n}$$
: $det(A) = 0 \iff A \text{ singular}$

Proposition: For $A \in \mathbb{R}^{n \times n}$, the following claims are equivalent:

- $det(A) \neq 0$
- · columns of A are linearly independent
- rows of A are linearly independent
- rank(A) = h
- Ker(A) = {0}
- · A is invertible
- Ax = b has a unique solution for each $b \in \mathbb{R}^n$

Cramer's rule: $A \in \mathbb{R}^{n \times n}$ non-singular, $b \in \mathbb{R}^n$, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ unique solution of Ax = b.

Proof: Use cofactor matrix
$$C \in \mathbb{R}^{h \times n}$$
 defined: $C_{ij} = (-1)^{i+j} \cdot \det (A)$ ith row deleted

We can show:
$$A^{-1} = \frac{C_1^T}{\det(A)}$$

Hence:
$$X = \overline{A^1}b = \frac{C_1^Tb}{\det(A)}$$
 and $(C_1^Tb)_i = \sum_{k=1}^n (C_1^T)_{ik}b_k = \sum_{k=1}^n C_{ki}b_k$

$$\left(C^{\mathsf{T}}_{\mathsf{b}}\right)_{\mathsf{i}} = \sum_{k=1}^{\mathsf{n}} \left(C^{\mathsf{T}}_{\mathsf{i}_{\mathsf{k}}}\right)_{\mathsf{i}_{\mathsf{k}}} \mathsf{b}_{\mathsf{k}} = \sum_{k=1}^{\mathsf{n}} C_{\mathsf{k}_{\mathsf{i}}} \mathsf{b}_{\mathsf{k}}$$

$$=\sum_{k=1}^{n}\det\left(\begin{array}{ccccc} a_{1}\cdots & a_{i-1}& e_{k}& a_{i+1}\cdots & a_{h}\\ & & & & & & & & & & & & \\ \end{array}\right)b_{k}$$

linear in the ith column
$$= \det \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$