

Linear Algebra - Part 44

$$A \in \mathbb{R}^{2 \times 2}$$
 \longrightarrow system of linear equations $A \times = 6$

Assume
$$\times 0$$

$$\begin{pmatrix} \alpha_{11} & \alpha_{11} & b_1 \\ \alpha_{21} & \alpha_{22} & b_2 \end{pmatrix} \xrightarrow{\Gamma - \frac{\alpha_{21}}{\alpha_{11}}} \begin{pmatrix} \alpha_{11} & \alpha_{12} & b_1 \\ 0 & \alpha_{22} - \frac{\alpha_{21}}{\alpha_{11}} \alpha_{12} & b_2 - \frac{\alpha_{21}}{\alpha_{11}} b_1 \end{pmatrix} \xrightarrow{\Gamma \cdot \alpha_{11}}$$

 \times 0 \iff we have a unique solution

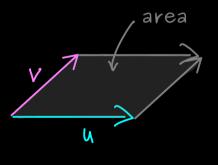
<u>Definition:</u> For a matrix $A = \begin{pmatrix} a_n & a_n \\ a_{21} & a_{32} \end{pmatrix} \in \mathbb{R}^{2\times 2}$, the number

$$det(A) := \alpha_{11} \alpha_{22} - \alpha_{12} \alpha_{21}$$

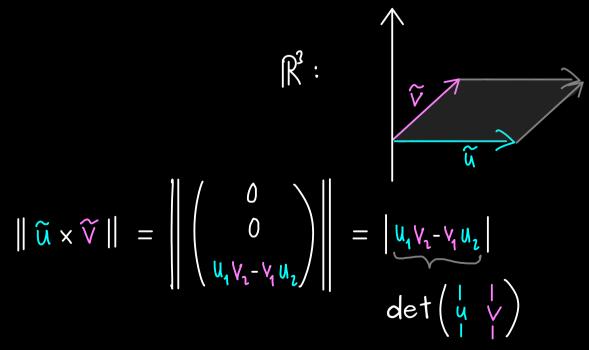
is called the determinant of A.

What about volumes? ~> voln

in \mathbb{R}^2 : $vol_2(u,v) := \frac{orientated}{v}$ area of parallelogram rotate u rotate



Relation to cross product: embed \mathbb{R}^2 into \mathbb{R}^3 : $\widetilde{u} := \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, $\widetilde{V} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$



Result: $vol_2(u,v) = det(u,v)$ (volume function = determinant)