

## Linear Algebra - Part 44

$$A \in \mathbb{R}^{2 \times 2}$$
  $\longrightarrow$  system of linear equations  $A \times = 6$ 

Assume 
$$\times 0$$

$$\begin{pmatrix} \alpha_{11} & \alpha_{11} & b_1 \\ \alpha_{21} & \alpha_{22} & b_2 \end{pmatrix} \xrightarrow{\Gamma - \frac{\alpha_{21}}{\alpha_{11}}} \begin{pmatrix} \alpha_{11} & \alpha_{12} & b_1 \\ 0 & \alpha_{22} - \frac{\alpha_{21}}{\alpha_{11}} \alpha_{12} & b_2 - \frac{\alpha_{21}}{\alpha_{11}} b_1 \end{pmatrix} \xrightarrow{\Gamma \cdot \alpha_{11}}$$

 $\times$  0  $\iff$  we have a unique solution

<u>Definition:</u> For a matrix  $A = \begin{pmatrix} a_n & a_n \\ a_{21} & a_{32} \end{pmatrix} \in \mathbb{R}^{2\times 2}$ , the number

$$det(A) := \alpha_{11} \alpha_{22} - \alpha_{12} \alpha_{21}$$

is called the determinant of A.

What about volumes? ~> voln

in  $\mathbb{R}^2$ :  $vol_2(u,v) := \frac{orientated}{v}$  area of parallelogram rotate u rotate



Relation to cross product: embed  $\mathbb{R}^2$  into  $\mathbb{R}^3$ :  $\widetilde{u} := \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ ,  $\widetilde{V} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ 



Result:  $vol_2(u,v) = det(u,v)$ (volume function = determinant)