

Linear Algebra - Part 41

$$A \in \mathbb{R}^{m \times h}$$

Gaussian elimination

row echelon form

 X_1
 X_2

$$\begin{pmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 \\
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & -1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
-2 \\
1 \end{pmatrix}
\begin{pmatrix}
2 \\
0
\end{pmatrix}$$

$$\Rightarrow \ker(A) = \left\{ \begin{array}{l} x_{2} \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_{5} \begin{pmatrix} 2 \\ 0 \\ -3 \\ -2 \\ 1 \end{pmatrix} \middle| x_{2} \mid x_{5} \in \mathbb{R} \right\}$$

Remember:

$$dim(Ker(A)) = number of free variables + dim(Ran(A)) = number of leading variables = h$$

<u>Proposition:</u> For $A \in \mathbb{R}^{m \times h}$ and $b \in \mathbb{R}^{m}$, we have the following equivalences:

- (1) $A \times = 6$ has at least one solution.
- (2) $b \in Ran(A)$
- (3) b can be written as a linear combination of the columns of A.
- (4) Row echelon form looks like:

- <u>Proof:</u> (1) \iff (2) given by definition of Ran(A)
 - (2) \iff (3) given by column picture of Ran(A)

(4) > (1)

Then solve / by backwards substitution.

(or argue with rank(A) = rank((A|b))

(1) \Longrightarrow (4) (let's show: $\neg(4) \Longrightarrow \neg(1)$)

Assume: 0 = C 0 =