

Linear Algebra - Part 33

$$A \in \mathbb{R}^{m \times n} \longrightarrow A^{\mathsf{T}} \in \mathbb{R}^{n \times m}$$

standard inner product in
$$\mathbb{R}^n \longrightarrow \langle u, v \rangle \in \mathbb{R}$$

 $= u^T v$

Proposition: For $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$:

$$\langle y, Ax \rangle = \langle A^T y, x \rangle$$

inner product in \mathbb{R}^m inner product in \mathbb{R}^n

Proof:
$$\langle \tilde{u}, \tilde{v} \rangle = \tilde{u}^T \tilde{v}$$
 for $\tilde{u}, \tilde{v} \in \mathbb{R}^m$ $(A^T y)^T = y^T \cdot (A^T)^T$ $\langle y, \tilde{A} x \rangle = y^T (A x) = (y^T A) x = (A^T y)^T x = \langle A^T y, x \rangle$

Alternative definition: A^T is the only matrix $B \in \mathbb{R}^{h \times m}$ that satisfies:

$$\langle y, Ax \rangle = \langle By, x \rangle$$
 for all x, y