

Linear Algebra - Part 30

injectivity, surjectivity, bijectivity for square matrices

system of linear equations:
$$A \times = b \stackrel{\text{if A invertible}}{\Longrightarrow} A^{-1}A \times = A^{-1}b \Longrightarrow \times = A^{-1}b$$

Theorem:
$$A \in \mathbb{R}^{n \times n}$$
 square matrix. $f_A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ induced linear map.

Then:
$$f_A$$
 is injective $\iff f_A$ is surjective

Proof:
$$(\Longrightarrow)$$
 f_A injective, standard basis of \mathbb{R}^n (e_1, \dots, e_n) $\Longrightarrow (f_A(e_1), \dots, f_A(e_n))$ still linearly independent basis of \mathbb{R}^n

For each $y \in \mathbb{R}^n$, you find $x \in \mathbb{R}^n$ with $f_A(x) = y$.

We know:
$$X = X_1 e_1 + X_2 e_2 + \cdots + X_n e_n$$

$$Y = f_A(X) = X_1 f_A(e_1) + X_2 f_A(e_2) + \cdots + X_n f_A(e_n)$$

$$\Longrightarrow (f_A(e_1), ..., f_A(e_n))$$
 spans \mathbb{R}^n

 $\stackrel{\text{n}}{\Longrightarrow}$ $\left(f_A(e_1), ..., f_A(e_n) \right)$ linearly independent

Assume
$$f_A(x) = f_A(\tilde{x}) \implies f_A(x-\tilde{x}) = 0$$

$$\implies \bigvee_1 f_A(e_1) + \bigvee_2 f_A(e_2) + \dots + \bigvee_n f_A(e_n) = 0$$

lin. independence
$$V_1 = V_2 = \cdots = V_n = 0$$

$$\Rightarrow$$
 $\times = \tilde{\times}$ \Rightarrow f_A is injective