

Linear Algebra - Part 27

Steinitz Exchange Lemma: $(V^{(1)}, V^{(2)}, ..., V^{(k)})$ basis of \mathcal{U} $(a^{(1)}, a^{(2)}, ..., a^{(\ell)})$ lin. independent vectors in U \Longrightarrow new basis of \bigvee

Fact: Let $U \subseteq \mathbb{R}^n$ be a subspace and $B = (V^{(1)}, V^{(2)}, \dots, V^{(k)})$ be a basis of U.

- (a) Each family $(w^{(1)}, w^{(2)}, ..., w^{(m)})$ with m > k vectors in UThen: is linearly dependent.
 - (b) Each basis of $\frac{1}{100}$ has exactly $\frac{1}{100}$ elements.

Let $U \subseteq \mathbb{R}^n$ be a subspace and B be a basis of U. Definition:

The number of vectors in 3 is called the dimension of 1.

We write: dim (U) integer

set:
$$dim(\{0\}) := 0$$
 $\left(Span(\emptyset) = \{0\} \right)$ basis

Example:

(e1, e2, ..., en) standard basis of R"

$$\dim\left(\mathbb{R}^n\right) = n$$

