

Linear Algebra - Part 18

linear = conserves structure of a vector space

For the vector space \mathbb{R}^n : \rightarrow vector addition + scalar multiplication \mathcal{N} .

<u>Definition:</u> $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is called <u>linear</u> if for all $x, y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$:

(a)
$$f(x+y) = f(x) + f(y)$$

addition in \mathbb{R}^n addition in \mathbb{R}^m

(b)
$$\int (\lambda \cdot x) = \lambda \cdot \int (x)$$

Example: (1) $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = x linear

(2)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = x^2$ not linear because $f(3.1) = 9$

$$3 \cdot f(1) = 3^{4}$$

(3) $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = x + 1 not linear because

$$f(0.1) = 1$$

$$0. \ \xi(1) = 0^{\#}$$