Linear Algebra - Part 18 linear = conserves structure of a vector space For the vector space \mathbb{R}^n : \rightarrow vector addition + scalar multiplication \mathcal{N} . <u>Definition:</u> $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is called <u>linear</u> if for all $x, y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$: (a) $$f(x+y) = f(x) + f(y)$$ addition in \mathbb{R}^n addition in \mathbb{R}^m (b) $$\int (\lambda \cdot x) = \lambda \cdot \int (x)$$ Example: (1) $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = x linear (2) $$f: \mathbb{R} \longrightarrow \mathbb{R}$$, $f(x) = x^2$ not linear because $f(3.1) = 9$ $$3 \cdot f(1) = 3^{4}$$ (3) $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = x + 1 not linear because $$f(0.1) = 1$$ $$0. \ \xi(1) = 0^{\#}$$