Linear Algebra - Part 65

canonical basis:

eigenvector basis:

$$
D=X^{-1} A X
$$

Is that possible? For given matrix $A \in \mathbb{C}^{n \times n}$ with eigenvectors $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$:

- Can we express each $u \in \mathbb{C}^{n}$ with $\alpha_{1} x^{(1)}+\alpha_{2} x^{(2)}+\cdots+\alpha_{n} x^{(n)}$?
- $\operatorname{span}\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)=\mathbb{C}^{n}$?
- $\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)$ basis of \mathbb{C}^{n} ?
- $X=\left(\begin{array}{ccc}\mid & \mid & \mid \\ x^{(1)} & x^{(2)} & \ldots \\ \mid & x^{(n)} \\ \mid & & \mid\end{array}\right)$ invertible ?

Definition: $A \in \mathbb{C}^{n \times n}$ is called diagonalizable if one can find n eigenvectors of A such that they form a basis \mathbb{C}^{n}.

Example:
(a) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right), \quad e_{1}, e_{2}$ eigenvectors $\Rightarrow A$ is diagonalizable
(b)

$$
B=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right),\binom{1}{0},\binom{1}{1} \text { eigenvectors } \Rightarrow B \text { is diagonalizable }
$$

(c)

$$
C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \text { all eigenvectors lie in direction }\binom{1}{0} \Rightarrow C \underset{\text { diagonalizable }}{C \text { is not }}
$$

Remember: For $A \in \mathbb{C}^{n \times n}$:

- $\alpha(\lambda)=\gamma(\lambda)$ for all eigenvalues $\lambda \Leftrightarrow A$ is diagonalizable
- A normal $\Rightarrow A$ is diagonalizable (One can choose even an ONB with eigenvectors)
- A has n different eigenvalues $\Rightarrow A$ is diagonalizable

