

such that they form a basis \mathbb{C}' .

Example:

(a)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, e_1 , e_2 eigenvectors \Longrightarrow A is diagonalizable

$$\begin{array}{c} (b) \\ B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ eigenvectors } \Longrightarrow B \text{ is diagonalizable}$$

(c)

$$C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \text{ all eigenvectors lie in direction } \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies C \text{ is } \underline{not}$$
diagonalizable

Remember: For $A \in \mathbb{C}^{n \times n}$: • $\alpha(\lambda) = \gamma(\lambda)$ for all eigenvalues $\lambda \iff A$ is diagonalizable • A normal $\implies A$ is diagonalizable (One can choose even an ONB with eigenvectors) • A has n different eigenvalues $\implies A$ is diagonalizable