Linear Algebra - Part 64

Diagonalization $=$ transform matrix into a diagonal one

$=$ find a an optimal coordinate system

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right), \quad \lambda_{1}=4, \quad \lambda_{2}=1 \quad \text { (eigenvalues) } \\
& x=\binom{2}{1}, y=\binom{1}{-1}
\end{aligned} \text { (eigenvectors) }
$$

$$
\alpha x+\beta y \quad \longmapsto \quad \alpha \lambda_{1} x+\beta \lambda_{2} y
$$

Diagonalization: $A \in \mathbb{C}^{n \times n} \leadsto \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \quad$ (counted with algebraic multiplicities)

$$
\leadsto x^{(1)}, x^{(2)}, \ldots, x^{(n)} \quad \text { (associated eigenvectors) }
$$

$$
\leadsto A x^{(1)}=\lambda_{1} x^{(1)}, \ldots, A x^{(n)}=\lambda_{n} x^{(n)} \quad \begin{array}{r}
(\text { eigenvalue } \\
\text { equations) }
\end{array}
$$

$$
A\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x^{(1)} & x^{(2)} & \cdots & x^{(n)} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
A x^{(1)} & A x^{(2)} & \cdots & A x^{(n)} \\
\mid & \mid &
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
\mid & & & \\
\lambda_{1} x^{(1)} & \lambda_{2} x^{(2)} & \ldots & \lambda_{\lambda_{n} x^{(n)}} \\
\mid & \mid & & \mid
\end{array}\right)=\underbrace{\left(\begin{array}{llll}
\mid & & & \mid \\
x^{(1)} & x^{(2)} \ldots & x^{(n)} \\
\mid & \mid & \mid
\end{array}\right)}_{X} \underbrace{\left(\begin{array}{llll}
\lambda_{1} & & \\
& & & \\
& \lambda_{2} & \\
& & \ddots & \\
& & \lambda_{n}
\end{array}\right)}_{D}
$$

$$
\Rightarrow \quad A X=X D
$$

If X is invertible, then:

$$
D=X^{-1} A X
$$

A is similar to a diagonal matrix

Application:

$$
\begin{aligned}
A^{98} & =\left(X D X^{-1}\right)^{98}=X D \underbrace{X^{-1} X D \underbrace{X^{-1}}_{\mathbb{1}} \times D X^{-1} \cdots X D X^{-1}}_{\mathbb{1}} \begin{array}{l}
\\
\end{array}=X D^{98} X^{-1} \\
& =X\left(\begin{array}{ll}
\lambda_{1}^{98} & \lambda_{28}^{98} \\
&
\end{array}\right) X^{-1}
\end{aligned}
$$

