Linear Algebra - Part 63

Assume: x eigenvector for $A \in \mathbb{C}^{n \times n}$ associated to eigenvalue $\lambda \in \mathbb{C}$

$$
\Rightarrow A^{2} x=\lambda^{2} x \Rightarrow A^{3} x=\lambda^{3} x
$$

induction

$$
\Rightarrow A^{m} x=\lambda^{m} x \quad \text { for all } \quad m \in \mathbb{N}
$$

spectral mapping theorem: $A \in \mathbb{C}^{n \times n}, p: \mathbb{C} \longrightarrow \mathbb{C}, p(z)=C_{m} z^{m}+\cdots+C_{1} z^{1}+C_{0}$
Define: $\quad p(A)=C_{m} A^{m}+C_{m-1} A^{m-1}+\cdots+C_{1} A+C_{0} \cdot \mathbb{1}_{n} \in \mathbb{C}^{n \times n}$
Then: $\quad \operatorname{spec}(p(A))=\{p(\lambda) \mid \lambda \in \operatorname{spec}(A)\}$

Proof: Show two inclusion: (\geq) (see above)
(\subseteq) ist case: p constant, $p(z)=C_{0}$.
Take $\tilde{\lambda} \in \operatorname{spec}(p(A)) \Rightarrow \underbrace{\mathbb{N}}_{\left(c_{0}-\tilde{\lambda}\right)^{n}} \underbrace{p(A)}_{c_{0} \mathbb{1}}-\tilde{\lambda} \mathbb{1})=0$

$$
\Rightarrow \widetilde{\lambda} \in\{p(\lambda) \mid \lambda \in \operatorname{spec}(A)\} \checkmark
$$

2nd case: p not constant. Do proof by contraposition.
Assume: $\mu \notin\{p(\lambda) \mid \lambda \in \operatorname{spec}(A)\}$

$$
\text { Define polynomial: } \begin{aligned}
& q(z)= p(z)-\mu \\
&=C \cdot\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{m}\right) \\
& x_{0} \\
& \text { By definition of } \mu: \quad a_{j} \notin \operatorname{spec}(A) \quad \text { for all } j \\
& \Rightarrow \operatorname{det}\left(A-a_{j} \mathbb{1}\right) \neq 0 \quad \text { for all } j
\end{aligned}
$$

Hence: $\operatorname{det}(p(A)-\mu \mathbb{1})=\operatorname{det}(q(A))$

$$
\begin{aligned}
& =\operatorname{det}\left(C \cdot\left(A-a_{1}\right)\left(A-a_{2}\right) \cdots\left(A-a_{m}\right)\right) \\
& =C^{n} \cdot \operatorname{det}\left(A-a_{1}\right) \operatorname{det}\left(A-a_{2}\right) \cdots \operatorname{det}\left(A-a_{m}\right) \\
& \neq 0
\end{aligned}
$$

$$
\Rightarrow \mu \notin \operatorname{spec}(p(A))
$$

Example: $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right), \quad \operatorname{spec}(A)=\{1,4\}$

$$
B=3 A^{3}-7 A^{2}+A-21, \quad \operatorname{spec}(B)=\{-5,82\}
$$

