Linear Algebra - Part 59

Recall: in $\mathbb{R}^{n}:\langle x, y\rangle=\sum_{k=1}^{n} x_{k} y_{k}$
in $\mathbb{C}^{n}:\langle x, y\rangle=\sum_{k=1}^{n} \overline{\bar{x}_{k}} y_{k}$
in $\mathbb{R}^{n}:\langle x, A y\rangle=\left\langle A^{\top} x, y\right\rangle$

$$
\sum_{k=1}^{n} x_{k}^{\prime \prime}\left(A y_{k}=\sum_{\substack{k=1 \\ j=1}}^{n} x_{k} a_{k j} y_{j}=\sum_{\substack{k=1 \\ j=1}}^{n}\left(A_{j k}\right)^{2} x_{k} y_{j}\right.
$$

in $\left.\mathbb{C}^{n}:\langle x, A y\rangle=\sum_{\substack{k=1 \\ j=1}}^{n} \overline{x_{k}} a_{k j} y_{j}=\sum_{\substack{k=1 \\ j=1}}^{n} a_{k j} \overline{\bar{x}_{k}} y_{j}=\sum_{\substack{k=1 \\ j=1}}^{n} \overline{\left(A_{j}\right)_{j k}} x_{k}\right) y_{j}$

$$
=\left\langle A^{*} x, y\right\rangle
$$

Definition: For $A \in \mathbb{C}^{m \times n}$ with $A=\left(\begin{array}{cccc}a_{n 1} & a_{12} & a_{13} & \cdots \\ a_{12} & & \\ \vdots & \cdots & & \\ \vdots & & & \\ a_{\text {mn }}\end{array}\right)$,

$$
A^{*}=\left(\begin{array}{cccc}
\overline{a_{41}} & \overline{a_{21}} & \cdots & \overline{a_{m 1}} \\
\frac{a_{n}}{1} & \ddots & \vdots \\
\vdots & \cdots & \overline{a_{m n}}
\end{array}\right) \in \mathbb{C}^{n \times m}
$$

is called the adjoint matrix/ conjugate transpose/ Hermitian conjugate.

Examples:
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \Rightarrow A^{*}=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}i & 1+i & 0 \\ 2 & e^{-i} & 1-i\end{array}\right) \Rightarrow A^{*}=\left(\begin{array}{cc}-i & 2 \\ 1-i & e^{i} \\ 0 & 1+i\end{array}\right)$

Remember:
in $\mathbb{R}^{n}:\langle x, y\rangle=x^{\top} y$ (standard inner product)
in $\mathbb{C}^{n}:\langle x, y\rangle=x^{*} y \quad$ (standard inner product)

Proposition:
$\operatorname{spec}\left(A^{*}\right)=\{\bar{\lambda} \mid \lambda \in \operatorname{spec}(A)\}$

