Linear Algebra - Part 57

Proposition:

Recall:
$\operatorname{det}(A-\lambda \mathbb{1})=0$ $\stackrel{\Leftrightarrow}{\Leftrightarrow}$
(a) $\operatorname{spec}\left(\begin{array}{cccc}a_{11} & a_{12} & a_{13} & \cdots \\ & a_{1 n} \\ & a_{22} & & a_{2 n} \\ & & \ddots & \vdots \\ & & & a_{n n}\end{array}\right)=\left\{a_{11}, a_{22}, \ldots, a_{n n}\right\}$

(c)

$$
\operatorname{spec}\left(A^{\top}\right)=\operatorname{spec}(A)
$$

Example:
(a)

$$
\operatorname{spec}\left(\begin{array}{llll}
2 & 5 & 8 & 9 \\
0 & 3 & 0 & 8 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & 1
\end{array}\right)=\{1,2,3\}
$$

(b)

$$
\left.\begin{array}{rl}
\operatorname{spec}\left(\begin{array}{llllll}
1 & 2 & 4 & 5 & 8 & 7 \\
0 & 7 & 7 & 9 & 8 & 4 \\
0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 7 & 8 & 0 & 0 \\
0 & 0 & 5 & 6 & 1 & 2 \\
0 & 0 & 7 & 9 & 0 & 3
\end{array}\right) & =\operatorname{spec}\left(\begin{array}{ll}
1 & 2 \\
0 & 7
\end{array}\right)
\end{array}\right) \text { uspec }\left(\begin{array}{|llll}
5 & 0 & 0 & 0 \\
7 & 8 & 0 & 0 \\
5 & 6 \\
7 & 9 & 1 & 2 \\
0 & 3 \\
\hline
\end{array}\right) .
$$

