Linear Algebra - Part 55

```
\lambda\epsilon\operatorname{spec}(A)\Leftrightarrow\operatorname{det}(A-\lambda\mathbb{1})=0
```

Fundamental theorem of algebra: For $a_{n} \neq 0$ and $a_{n}, a_{n-1}, \ldots, a_{0} \in \mathbb{C}$, we have:

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

has n solutions $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$ (not necessarily distinct).
Hence:

$$
p(x)=a_{n}\left(x-x_{n}\right) \cdot\left(x-x_{n-1}\right) \cdots\left(x-x_{1}\right)
$$

Conclusion for characteristic polynomial: $A \in \mathbb{R}^{n \times n}, p_{A}(\lambda):=\operatorname{det}(A-\lambda \mathbb{1})$

- $p_{A}(\lambda)=0$ has at least one solution in \mathbb{C}
$\Rightarrow A$ has at least one eigenvalue in \mathbb{C}

$$
\text { Example: } \begin{aligned}
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) & \Rightarrow p_{A}(\lambda)=\lambda^{2}+1 \\
& \Rightarrow-i \text { and } i \text { are eigenvalues }
\end{aligned}
$$

- $p_{A}(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)$

$$
\text { Example: } A=\left(\begin{array}{lll}
1 & & \\
& 2 & \\
& & \\
& & 2
\end{array}\right) \Rightarrow p_{A}(\lambda)=(\lambda-1)^{2}(\lambda-2)^{2}
$$

Definition: If $\tilde{\lambda}$ occurs k times in the factorisation $p_{A}(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)$, then we say: $\tilde{\lambda}$ has algebraic multiplicity $k=: \alpha(\tilde{\lambda})$

Remember:

- If $\tilde{\lambda} \in \operatorname{spec}(A) \Leftrightarrow 1 \leq \alpha(\hat{\lambda}) \leq n$
- $\sum_{\tilde{\lambda} \in \mathbb{C}} \alpha(\tilde{\lambda})=n$

