ON STEADY

The Bright Side of Mathematics

Linear Algebra - Part 55

$$\lambda \in \text{spec}(A) \iff \det(A - \lambda 1) = 0$$

Fundamental theorem of algebra: For $a_n \neq 0$ and a_n , a_{n-1} ,..., $a_0 \in \mathbb{C}$, we have:

$$\rho(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$$

has n solutions $x_1, x_2, ..., x_n \in \mathbb{C}$ (not necessarily distinct).

Hence: $p(x) = a_n(x-x_n)\cdot(x-x_{n-1})\cdots(x-x_1)$

Conclusion for characteristic polynomial: $A \in \mathbb{R}^{n \times n}$, $\rho_A(\lambda) := \det(A - \lambda 1)$

• $\rho_A(\lambda) = 0$ has at least one solution in $\mathbb C$

 \Longrightarrow A has at least one eigenvalue in $\mathbb C$

Example:
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \implies \rho_A(\lambda) = \lambda^2 + 1$$

→ -i and i are eigenvalues

• $\rho_A(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$

Example: $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow \rho_A(\lambda) = (\lambda - 1)^2 (\lambda - 2)^2$

<u>Definition:</u> If $\widetilde{\chi}$ occurs k times in the factorisation $\rho_A(\chi) = (-1)^n (\chi - \chi_A) \cdots (\chi - \chi_B)$,

then we say: $\tilde{\lambda}$ has algebraic multiplicity $k =: \alpha(\tilde{\lambda})$

Remember: If $\widehat{\lambda} \in \operatorname{spec}(A) \iff 1 \leq \alpha(\widehat{\lambda}) \leq h$

$$\sum_{\widetilde{\lambda} \in \mathbb{C}} \alpha(\widetilde{\lambda}) = n$$