Linear Algebra - Part 54

$$
\begin{aligned}
A \in \mathbb{R}^{n \times n} & \longleftrightarrow f_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad \text { linear map } \\
& \text { eigenvalue equation: } A x=\lambda \cdot x \quad, \quad x \neq 0
\end{aligned}
$$

optimal coordinate system: $A \in \mathbb{R}^{2 \times 2}, A x=2 x, A y=1 y$

$u=a \cdot x+b \cdot y$

$$
\begin{aligned}
A u & =A(a \cdot x+b \cdot y) \\
& =a \cdot A x+6 A y \\
& =2 a x+1 b y
\end{aligned}
$$

How to find enough eigenvectors?
$x \neq 0$ eigenvector associated to eigenvalue $\lambda \Leftrightarrow x \in \operatorname{Ker}(\underbrace{A-\lambda \mathbb{1}})$
singular matrix

$$
\begin{aligned}
\operatorname{det}(A-\lambda \mathbb{1})=0 & \Leftrightarrow \operatorname{ker}(A-\lambda \mathbb{1}) \text { is non-trivial } \\
& \Leftrightarrow \lambda \text { is eigenvalue of } A
\end{aligned}
$$

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right), \quad A-\lambda \mathbb{1}=\left(\begin{array}{cc}
3-\lambda & 2 \\
1 & 4-\lambda
\end{array}\right) \\
& \begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
3-\lambda & 2 \\
1 & 4-\lambda
\end{array}\right)=(3-\lambda)(4-\lambda)-2 \quad \text { characteristic polynomial } \\
&=10-7 \lambda+\lambda^{2} \\
&=(\lambda-5)(\lambda-2) \stackrel{!}{=} 0 \\
& \Rightarrow 2 \text { and } 5 \text { are eigenvalues of } A
\end{aligned}
\end{aligned}
$$

General case: for $A \in \mathbb{R}^{n \times n}$:

$$
\operatorname{det}(A-\lambda \mathbb{1})=\operatorname{det}\left(\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & & \vdots \\
\vdots & & \ddots & \\
a_{n 1} & \cdots & & a_{n n}-\lambda
\end{array}\right)
$$

Leibniz formula

$$
\begin{aligned}
& \stackrel{\downarrow}{=}\left(a_{11}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)+\cdots \\
& =(-1)^{n} \cdot \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda^{1}+c_{0}
\end{aligned}
$$

Definition: For $A \in \mathbb{R}^{n \times n}$, the polynomial of degree n given by

$$
p_{A}: \quad \lambda \longmapsto \operatorname{det}(A-\lambda \mathbb{1})
$$

is called the characteristic polynomial of A.

Remember: The zeros of the characteristic polynomial are exactly the eigenvalues of A.

