ON STEADY

The Bright Side of Mathematics

We know for $A \in \mathbb{R}^{2 \times 2}$: $det(A) \neq 0 \iff A \times = b$ has a unique solution $\iff A$ invertible = non-singular

For
$$A \in \mathbb{R}^{h \times h}$$
: $det(A) = 0 \iff A$ singular

Proposition: For $A \in \mathbb{R}^{n \times n}$, the following claims are equivalent:

- det(A) $\neq 0$
- columns of A are linearly independent
- rows of A are linearly independent
- rank(A) = h

• Ker(A) =
$$\{0\}$$

- A is invertible
- Ax = b has a unique solution for each $b \in \mathbb{R}^{n}$

<u>Cramer's rule</u>: $A \in \mathbb{R}^{n \times n}$ non-singular, $b \in \mathbb{R}^{n}$, $x = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{n} \end{pmatrix} \in \mathbb{R}^{n}$ unique solution of Ax = b.

Then:

$$X_{L} = \frac{\det\left(\begin{pmatrix} a_{1} \cdots a_{l-1} & a_{l+1} \cdots & a_{l} \end{pmatrix}\right)}{\det\left(\begin{pmatrix} a_{1} \cdots & a_{l-1} & a_{l+1} \cdots & a_{l} \right)\right)}$$
Proof: Use cofactor matrix $C \in \mathbb{R}^{k\times n}$ defined: $C_{ij} = (-1)^{i+j}$. $\det\left(\bigwedge^{j} \cdots & a_{j-1} & b_{l} & a_{j+1} \cdots & a_{l} \right)$
We can show: $A^{-1} = \frac{C^{T}}{\det(A)}$
We can show: $A^{-1} = \frac{C^{T}}{\det(A)}$
Hence: $X = A^{-1}b = \frac{C^{T}b}{\det(A)}$ and $(C^{T}b)_{i} = \sum_{k=1}^{n} (C^{T})_{ik}b_{k} = \sum_{k=1}^{n} C_{ki}b_{k}$

$$= \sum_{k=1}^{n} \det\left(\begin{pmatrix} a_{1} \cdots & a_{i-1} & b_{i} & a_{i+1} \cdots & a_{k} \end{pmatrix}\right)b_{k}$$
We can show: $A^{-1} = \frac{C^{T}b}{\det(A)}$ and $(C^{T}b)_{i} = \sum_{k=1}^{n} \det\left(\begin{pmatrix} a_{1} \cdots & a_{i-1} & b_{k} & a_{i+1} \cdots & a_{k} \end{pmatrix}\right)b_{k}$