Linear Algebra - Part 52

We know for $A \in \mathbb{R}^{2 \times 2}: \operatorname{det}(A) \neq 0 \Leftrightarrow A x=b$ has a unique solution $\Leftrightarrow A$ invertible $=$ non-singular

For $A \in \mathbb{R}^{n \times n}: \operatorname{det}(A)=0 \Leftrightarrow A$ singular

Proposition:
For $A \in \mathbb{R}^{n \times n}$, the following claims are equivalent:

- $\operatorname{det}(A) \neq 0$
- columns of A are linearly independent
- rows of A are linearly independent
- $\operatorname{rank}(A)=n$
- $\operatorname{Ker}(A)=\{0\}$
- A is invertible
- $A x=b$ has a unique solution for each $b \in \mathbb{R}^{n}$

Cramer's rule: $A \in \mathbb{R}^{n \times n}$ non-singular, $b \in \mathbb{R}^{n}, x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \dot{x}_{n}\end{array}\right) \in \mathbb{R}^{n}$ unique solution of $A x=b$.

Then:

$$
x_{i}=\frac{\operatorname{det}\left(\begin{array}{llllll}
\mid & & & \mid & & \\
a_{1} & \ldots & a_{i-1} & b & a_{i+1} & \ldots \\
\mid & & a_{n} \\
\mid & & \mid & \mid
\end{array}\right)}{\operatorname{det}\left(\begin{array}{llllll}
\mid & & \mid & \mid & & \mid \\
a_{1} & \ldots & a_{i-1} & a_{i} & a_{i+1} & \ldots
\end{array}\right)}
$$

Proof: Use cofactor matrix $G \in \mathbb{R}^{n \times n}$ defined: $c_{i j}=(-1)^{i+j} \cdot \operatorname{det}(A)$ jth column deleted $\stackrel{\substack{\text { Laplace } \\ \text { expansion } \\=}}{=} \operatorname{det}\left(\begin{array}{lll|lll}\mid & & & \mid & & \\ a_{1} & \ldots & a_{j-1} & e_{i} & a_{j+1} & \\ \mid & & & & & a_{n} \\ & & & & & \end{array}\right)$
We can show: $\quad A^{-1}=\frac{C^{\top}}{\operatorname{det}(A)}$
Hence: $\quad x=A^{-1} b=\frac{C^{\top} b}{\operatorname{det}(A)}$ and $\left(C^{\top} b\right)_{i}=\sum_{k=1}^{n}\left(C^{\top}\right)_{i k} b_{k}=\sum_{k=1}^{n} C_{k i} b_{k}$

$$
=\sum_{k=1}^{n} \operatorname{det}\left(\begin{array}{ccc|ccc}
\mid & & \mid & & & \\
a_{1} & \ldots & a_{i-1} & & & \\
\mid & & e_{k} & a_{i+1} & \ldots & a_{n}
\end{array}\right) b_{k}
$$

