Linear Algebra - Part 51

matrix $A \in \mathbb{R}^{n \times n} \leadsto$ linear map $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto A x$
linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \longrightarrow$ there is exactly one $A \in \mathbb{R}^{n \times n}$

$$
\text { with } f=f_{A}
$$

Here: $A=\left(\begin{array}{ccc}\mid & \mid & \\ f\left(e_{2}\right) & f\left(e_{2}\right) & \ldots \\ \mid & \mid & f\left(e_{n}\right) \\ \mid & & \\ \mid\end{array}\right)$
unit cube in \mathbb{R}^{n}

Remember: $\operatorname{det}(A)$ gives the relative change of volume caused by f_{A}.

Definition: For a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we define the determinant:

$$
\operatorname{det}(f):=\operatorname{det}(A) \text { where } A \text { is }\left(\begin{array}{ccc}
\mid & \mid & \mid \\
f\left(e_{1}\right) & f\left(e_{2}\right) & \cdots
\end{array}\right) f\left(e_{n}\right) .
$$

Multiplication rule: $\operatorname{det}(f \circ g)=\operatorname{det}(f) \operatorname{det}(g)$

Volume change:

