Linear Algebra - Part 46

n-dimensional volume form: vol $_{n}: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$

- linear in each entry
- antisymmetric
- $\operatorname{vol}_{n}\left(e_{1}, e_{2}, \ldots, e_{n}\right)=1$

Let's calculate:

$$
\operatorname{vol}_{n}(\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{n 1}
\end{array}\right), \underbrace{\left(\begin{array}{c}
a_{12} \\
\vdots \\
a_{n 2}
\end{array}\right), \ldots\left(\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{n n}
\end{array}\right)}_{(*)})=\operatorname{vol}_{n}\left(a_{11} \cdot e_{1}+\cdots+a_{n 1} e_{n 1}(*)\right)
$$

$=a_{11} \cdot \operatorname{vol}_{n}\left(e_{1},(*)\right)+\cdots+a_{n 1} \cdot \operatorname{vol}_{n}\left(e_{n},(*)\right)$
$=\sum_{j 1}^{n} a_{j, 1} \operatorname{vol}_{n}\left(e_{j 11}(*)\right)=\sum_{j 1}^{n} a_{j, 1} \operatorname{vol}_{n}\left(e_{j 11}\left(\begin{array}{c}a_{12} \\ \vdots \\ a_{n 2}\end{array}\right), \ldots\left(\begin{array}{c}a_{1 n} \\ \vdots \\ a_{n n}\end{array}\right)\right)$
$=\sum_{j=1}^{n} \sum_{j_{2}=1}^{n} a_{j 11} a_{j 212} \cdot \operatorname{vol}_{n}\left(e_{j 11} e_{j 21}\left(\begin{array}{c}a_{13} \\ \vdots \\ a_{n 3}\end{array}\right), \ldots,\left(\begin{array}{c}a_{1 n} \\ \vdots \\ a_{n n}\end{array}\right)\right)$
$=\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{n}=1}^{n} a_{j_{1}, 1} a_{j_{2}, 2} \cdots a_{j_{n}, n} \cdot \underbrace{v o l_{n}\left(e_{j_{1}}, e_{j 2}, \ldots, e_{j n}\right)}_{=0 \text { if two }}$
permutation of
$\{1, \ldots, n\}$

$$
\begin{aligned}
& =\sum_{\left(j_{1}, \ldots, j_{n}\right) \in S_{n}} a_{j_{1} 1} a_{j_{2}, 2} \cdots a_{j_{n}, n} \cdot \underbrace{\operatorname{vol}_{n}\left(e_{j 1}, e_{j 2}, \ldots, e_{j n}\right)} \\
& \text { where all entries } \\
& \begin{array}{l}
\text { where all entries } \\
\text { are different set of all permutations of }\{1, \ldots, n\}
\end{array} \\
& \left.\operatorname{sgn}\left(j_{1}, \ldots, j_{n}\right)\right)= \begin{cases}+1, & \begin{array}{l}
\text { even number of exchanges } \\
\text { to get to }(1, \ldots, n)
\end{array} \\
-1, & \text { odd number of exchanges } \\
\text { to get to }(1, \ldots, h)\end{cases} \\
& =\sum_{\left(j_{1}, \ldots, j_{n}\right) \in S_{n}} \operatorname{sgn}\left(\left(j_{\left.\left.1, \ldots, j_{n}\right)\right)} a_{j_{11} 1} a_{j_{2}, 2} \cdots a_{j_{n 1} n}=\operatorname{det}\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\right.\right.
\end{aligned}
$$

