ON STEADY

The Bright Side of Mathematics

Linear Algebra - Part 44

 $A \in \mathbb{R}^{l \times l}$ \longrightarrow system of linear equations $A \times = b$

Assume
$$0$$

$$\begin{pmatrix} \alpha_{11} & \alpha_{11} & b_1 \\ \alpha_{21} & \alpha_{22} & b_2 \end{pmatrix} \xrightarrow{\mathbb{T} - \frac{\alpha_{21}}{\alpha_{11}}}
\begin{pmatrix} \alpha_{11} & \alpha_{11} & b_1 \\ 0 & \alpha_{22} & \frac{\alpha_{21}}{\alpha_{11}} \alpha_{12} \\ 0 & \alpha_{$$

$$\begin{array}{c|c}
 & \alpha_{11} & \alpha_{11} \\
0 & \alpha_{11} \alpha_{22} - \alpha_{21} \alpha_{12} \\
\end{array} \begin{vmatrix} b_1 \\ a_{11} b_1 - a_{21} b_1 \\
\end{vmatrix}$$

 \times 0 \iff we have a unique solution

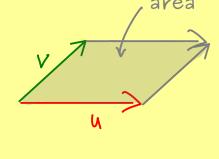
For a matrix $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{R}^{2\times 2}$, the number

$$det(A) := \alpha_{11} \alpha_{22} - \alpha_{12} \alpha_{21}$$

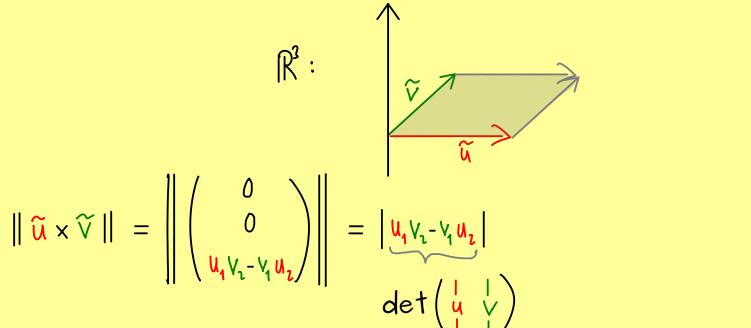
is called the determinant of A.

What about volumes? ~> voln

in \mathbb{R}^2 : $vol_2(u,v) := \frac{orientated}{v}$ area of parallelogram $\frac{v}{v}$ Trotate votate



Relation to cross product: embed \mathbb{R}^2 into \mathbb{R}^3 : $\widetilde{u} := \begin{pmatrix} u_1 \\ u_2 \\ 0 \end{pmatrix}$, $\widetilde{V} = \begin{pmatrix} V_1 \\ V_2 \\ 0 \end{pmatrix}$



 $vol_2(u,v) = det(u,v)$ (volume function = determinant)