Linear Algebra - Part 42

$A x=b \leadsto$ row echelon form

$$
S=\phi \quad \text { or } \quad S=V_{0}+\operatorname{Ker}(A)
$$

Proposition:
For $A \in \mathbb{R}^{m \times n}$, we have the following equivalences:
(a) For every $b \in \mathbb{R}^{m}: A x=b$ has at most one solution.
(b) $\operatorname{Ker}(A)=\{0\}$
(c) Row echelon form looks like:

(d) $\operatorname{rank}(A)=h$
(e) The linear map $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto A x$ is injective.

Result for square matrices: For $A \in \mathbb{R}^{n \times n}$:

