Linear Algebra - Part 41

$\left(\begin{array}{ccccc|c}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \\ \hline 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & -1 & 4 & 0 \\ 0 & 0 & 0 & 4 & 8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\Rightarrow \operatorname{ker}(A)=\left\{\left.x_{2}\left(\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
2 \\
0 \\
-3 \\
-2 \\
1
\end{array}\right) \right\rvert\, x_{2}, x_{5} \in \mathbb{R}\right\}
$$

Remember:

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{Ker}(A))=\text { number of free variables } \\
& + \\
& \operatorname{dim}(\operatorname{Ran}(A))=\text { number of leading variables } \\
& =n
\end{aligned}
$$

Proposition: For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, we have the following equivalences:
(1) $A x=6$ has at least one solution.
(2) $b \in \operatorname{Ran}(A)$
(3) b can be written as a linear combination of the columns of A.
(4) Row echelon form looks like:

Proof:
(1) \Leftrightarrow (2) given by definition of $\operatorname{Ran}(A)$
$(2) \Leftrightarrow$ (3) given by column picture of $\operatorname{Ran}(A)$

$$
\begin{aligned}
\operatorname{Ran}(A) & =\left\{\left.\left(\begin{array}{ccc}
1 & 1 \\
a_{1} & \cdots & a_{n} \\
1 & 1
\end{array}\right) x \right\rvert\, x \in \mathbb{R}^{n}\right\} \\
& =\left\{\left.x_{1} \cdot\left(\begin{array}{l}
1 \\
a_{1} \\
1
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
1 \\
a_{n} \\
1
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

$(4) \Rightarrow(1)$
Assume we have this:

by backwards substitution.

$$
\text { (or argue with } \operatorname{rank}(A)=\operatorname{rank}((A \mid b)))
$$

$(1) \Rightarrow(4) \quad$ (let's show: $\neg(4) \Rightarrow \neg(1))$

