Linear Algebra - Part 39

Goal: Gaussian elimination (named after Carl Friedrich Gauß)

solve $A x=6$
\rightarrow use row operations to bring $(A \mid b)$ into upper triangular form

$$
\begin{aligned}
\left(\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 3 & 1
\end{array}\right)
\end{aligned} \begin{aligned}
& \text { backwards substitution: } \\
& \text { third row: } 3 x_{3}=1 \Rightarrow x_{3}=\frac{1}{3} \\
& \text { second row: } 2 x_{2}+x_{3}=1 \Rightarrow \Rightarrow x_{2}=\frac{1}{3}
\end{aligned} \quad \begin{aligned}
& \text { first row: } 1 x_{1}+2 x_{2}+3 x_{3}=1 \Rightarrow x_{1}=-\frac{2}{3}
\end{aligned}
$$

$$
\rightarrow \text { or use row operations to bring }(A \mid b) \text { into row echelon form }
$$

\longrightarrow construct solution set

Example: system of linear equations: $\quad 2 x_{1}+3 x_{2}-1 x_{3}=4$

$$
\begin{aligned}
& 2 x_{1}-1 x_{2}+7 x_{3}=0 \\
& 6 x_{1}+13 x_{2}-4 x_{3}=9
\end{aligned}
$$

$$
\begin{aligned}
&\left(\begin{array}{ccc|c}
2 & 3 & -1 & 4 \\
2 & -1 & 7 & 0 \\
6 & 13 & -4 & 9
\end{array}\right)-1 \cdot I \leadsto\left(\begin{array}{rrr|r}
2 & 3 & -1 & 4 \\
0 & -4 & 8 & -4 \\
0 & 4 & -1 & -3
\end{array}\right)+1 \cdot \mathbb{I} \\
& \leadsto\left(\begin{array}{rrr|r}
2 & 3 & -1 & 4 \\
0 & -4 & 8 & -4 \\
0 & 0 & 7 & -7
\end{array}\right) \underset{\text { substitution }}{\text { backwards }} \\
& x_{2}=3
\end{aligned} x_{x_{1}=-1} \begin{aligned}
& x_{1}=-1
\end{aligned}
$$

Gaussian elimination:

$$
\begin{aligned}
& \leadsto\left(\begin{array}{c}
\alpha_{1}^{\top} \\
\alpha_{2}^{\top}-\frac{a_{21}}{a_{11}} \alpha_{1}^{\top} \\
\alpha_{m}^{\top}-\frac{a_{m 1}}{a_{11}} \alpha_{1}^{\top}
\end{array}\right) \xrightarrow{\sim} \quad \begin{array}{l}
\text { continue iteratively } \\
\leadsto
\end{array} \quad \text { row echelon form }
\end{aligned}
$$

