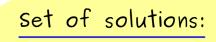
ON STEADY

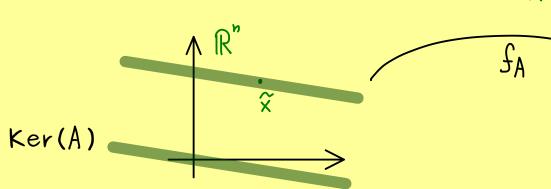
The Bright Side of Mathematics

Linear Algebra - Part 38

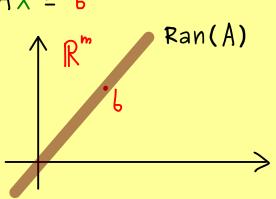


 $Ax = b \qquad (A \in \mathbb{R}^{m \times n})$

 χ solution: χ satisfies $\Lambda \chi = 1$



uniqueness needs $Ker(A) = \{0\}$



existence needs be Ran(A)

Proposition: For a system AX = b $(A \in \mathbb{R}^{m \times n})$

the <u>set of solutions</u> $S := \{ \widetilde{x} \in \mathbb{R}^n \mid A\widetilde{x} = b \}$

is an <u>affine</u> subspace (or empty).

More concretely: We have either $S=\phi$

or
$$S = V_0 + \text{Ker}(A)$$
 for a vector $V_0 \in \mathbb{R}^n$

$$\{V_0 + X_0 \mid X_0 \in \text{Ker}(A) \}$$

<u>Proof:</u> Assume $V_0 \in S$. $\Rightarrow AV_0 = b$

Set $\widetilde{X} := V_0 + X_0$ for a vector $X_0 \in \mathbb{R}^n$.

Then: $\widetilde{X} \in \mathcal{S} \iff A\widetilde{X} = b \iff AV_0 + AX_0 = b$

$$\Leftrightarrow$$
 $A \times_o = 0 \Leftrightarrow \times_o \in Ker(A)$

Remember: Row operations don't change the set of solutions!

$$S = V_0 + \text{Ker}(A)$$

$$AV_0 = b$$

$$AV_0 = Mb$$

$$AV_0 = Mb$$